Funded by the Office of Provost and the Office of the Vice President for Research

Development, Verification and Validation of a Test Method for Pyrrhotite in Concrete

PI: Kay Wille

Associate Professor, Director of ACMC lab

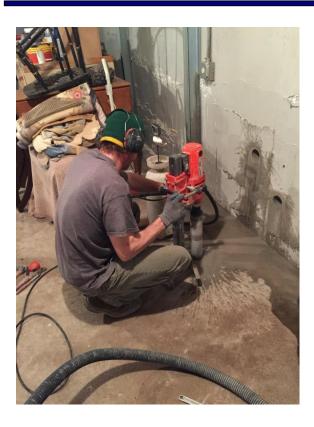
PI: Maria Chrysochoou

Associate Professor and Department Head Department of Civil & Environmental Engineering

Co-PI: Jim Mahoney

Director, Connecticut Transportation Institute

Concrete affected by pyrrhotite containing aggregates



Investigating the Deterioration of Basement Walls made of concrete in CT - PAST

validates the preseno

of pyrrhotite

Nov 2015 - August 2016

Attorney General Office

Department of Consumer Protection

observation hypothesis: test Validation of the hypothesis: spatial distribution of ettringite,

demonstrates the

richness in sulphate

SEM-EDS test

spatial deistribution

of ettringite

macro properties

micro structure

SEM-EDS test

oxidation of

pyrrhotite

shows compressive

science

What we know vs. what we don't know

We know

Pyrrhotite oxidation causes damage

Vertical foundation walls are impacted, not horizontal slabs

Moisture control prevents or slows down damage

We don't know

How much pyrrhotite causes how much damage damage? How fast?

Why?

How can we use that to protect impacted houses?

What will it take to answer these questions?

Step 1

Identify and quantify pyrrhotite with an standardized, reproducible method (measure is correct and always the same)

Phase I – funded by UCONN 12 months - \$300K

Step 2

 We apply the method to a large number of houses under different conditions AND do lab testing under controlled conditions

Future work

Step 3

 We use the data to develop a tiered system for risk assessment

Step 4

 We evaluate options (replace, repair, retrofit, do nothing) based on risk

Test Method for Pyrrhotite in Concrete - NOW

Goal: Develop a rapid and cost-effective test method

For what: Identify and quantify the presence of pyrrhotite in concrete (challenging)

Why: No test standard with known accuracy and precision exists

How:

- Prepare standard specimens with known pyrrhotite content AND obtain various field specimens
- ✓ Investigate sample volume and preparation requirements (how much sample do I need to make sure it represents the whole foundation)
- Apply a host of methods to both sample types and determine which combination has optimum performance in terms of
 - Accuracy
 - ✓ Speed
 - ✓ Cost

Methods for pyrrhotite analysis

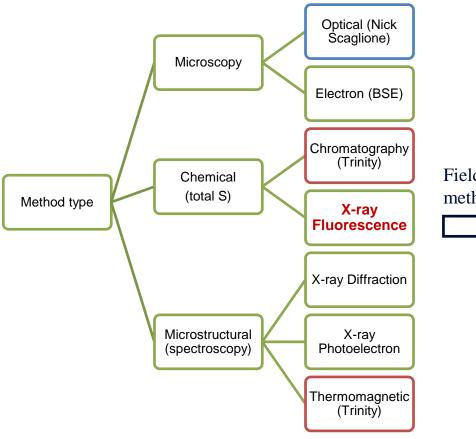


Photo: Courtesy Tennessee DOT

Measure Elements such as **S**

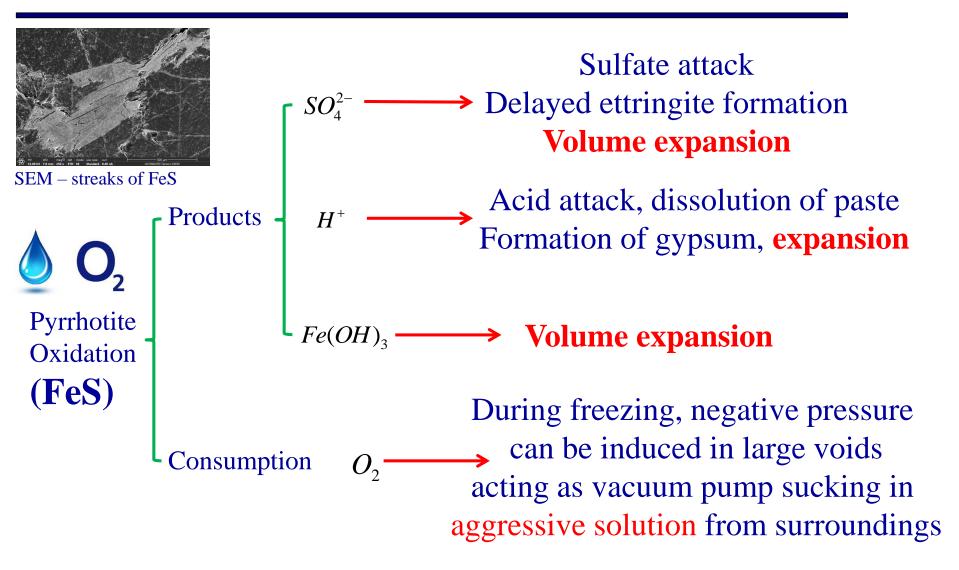
Photo: Courtesy Maine DOT

Sulfide (S^{2-}) vs Sulfate (SO_4^{2-})

Sulfate (SO_4^{2-})

→ gypsum (cement) / limestone (aggregates)

 \Box Sulfide (S²-)


→ pyrrhotite in aggregates

Mechanisms of Deterioration

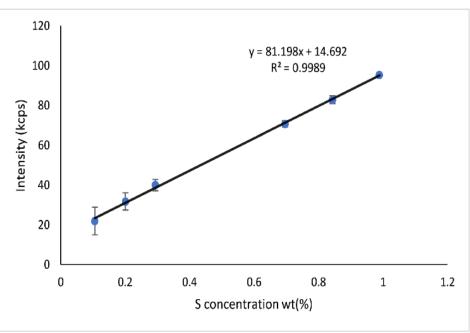
Sulfide vs Sulfate using WD-XRF

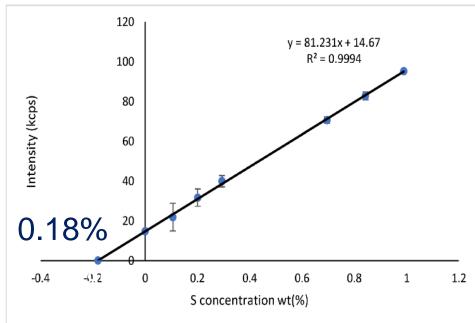
Chemical composition of KaminTM 35 used as a carrier for sulfide-sulfate-mixtures

Constituent	SiO ₂	Al_2O_3	Fe_2O_3	CaO	K ₂ O	TiO ₂	P_2O_5	S
Concentration (% by weight)	62.1	26.4	0.44	0.08	0.06	0.69	0.59	0.03

Concentrations of FeS and CuSO4*1/2H2O in prepared calibration samples for measurement by WD-XRF

	CaSO ₄	mix	FeS								
m(FeS) [g]	0	0.45	0.9	1.35	1.8	2.25	2.7	3.15	3.6	4.05	4.5
$m(CaSO_4)$ [g]	4.5	4.05	3.6	3.15	2.7	2.25	1.8	1.35	0.9	0.45	0
m(kaolin) [g] 4.5 g for each sample											
Total S(S ² -)/Total S	0	0.144	0.275	0.394	0.503	0.603	0.695	0.779	0.858	0.932	1
Total $S(S^{6+})/Total S$	1	0.856	0.725	0.606	0.497	0.397	0.305	0.221	0.142	0.068	0

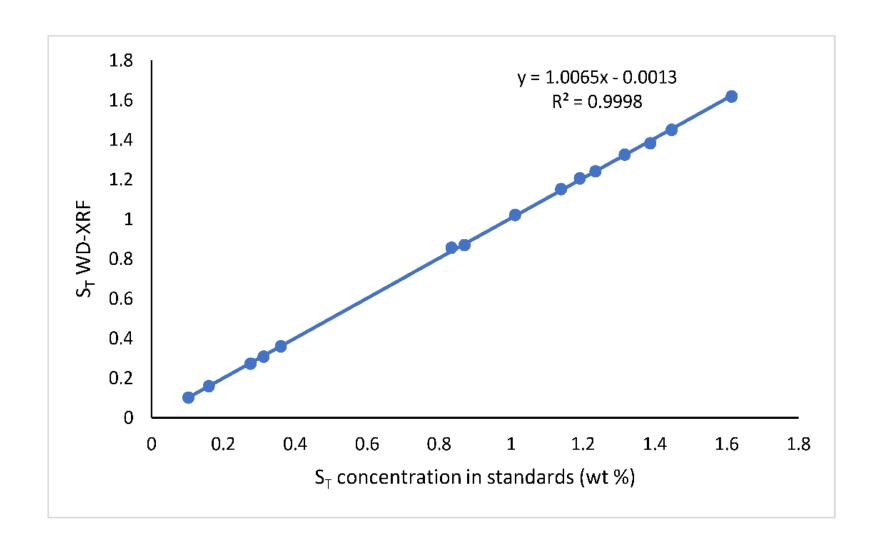

Total Sulfur Content using WD-XRF



(Wavelength Dispersive X-ray Fluorescence)

WD-XRF allows us to distinguish between sulfate (gypsum) and sulfide (pyrrhotite).

Total Sulfur Content?



Validation Total Sulfur Content - WD-XRF

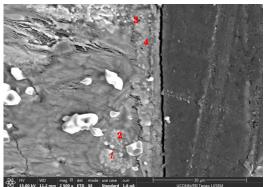
(Wavelength Dispersive X-ray Fluorescence)

Validation with other methods and samples

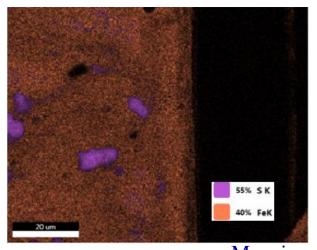
- Elemental Analyzer
- Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray spectroscopy (EDX)
- X-Ray Diffraction (XRD)
- Ion Chromatography (IC)
- PETROGRAPHIC ANALYSIS
- THERMOMAGNETIC ANALYSIS

INVESTIGATION METHODS - SEM + EDX

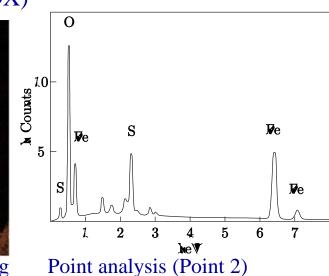
Teno field emission SEM +



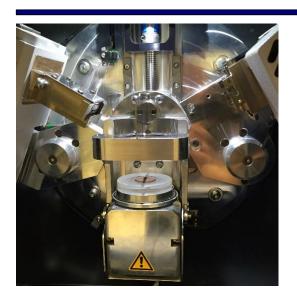
Scanning Electron Microscopy (SEM)


Energy Dispersive X-ray spectroscopy (EDX)

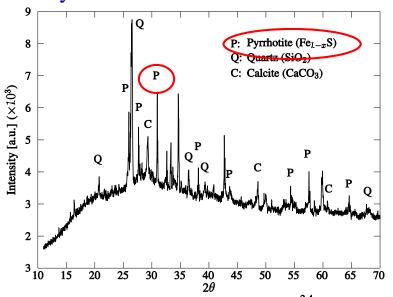
Microstructure (SEM)



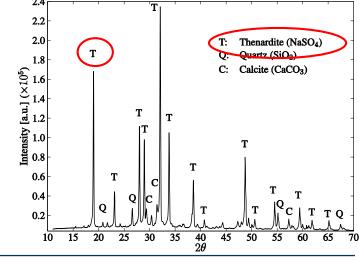
Elementary Composition (EDX)



INVESTIGATION METHODS - XRD

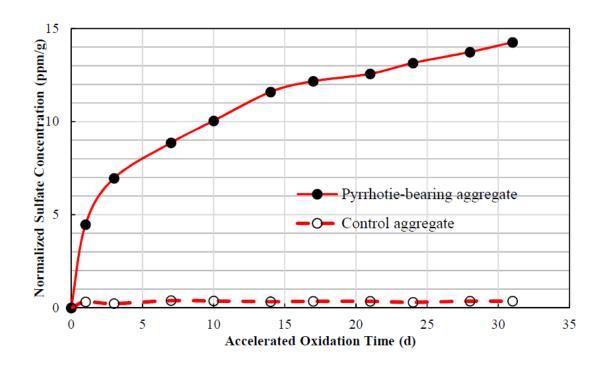


Bruker D2 phaser X-ray diffractometer



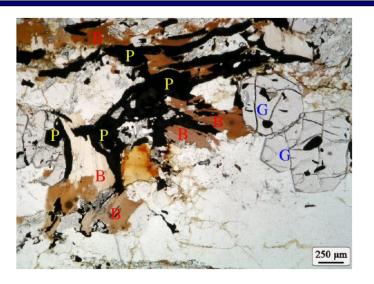
Crystal Phase identification

X-Ray Diffraction (XRD)


INVESTIGATION METHODS - IC

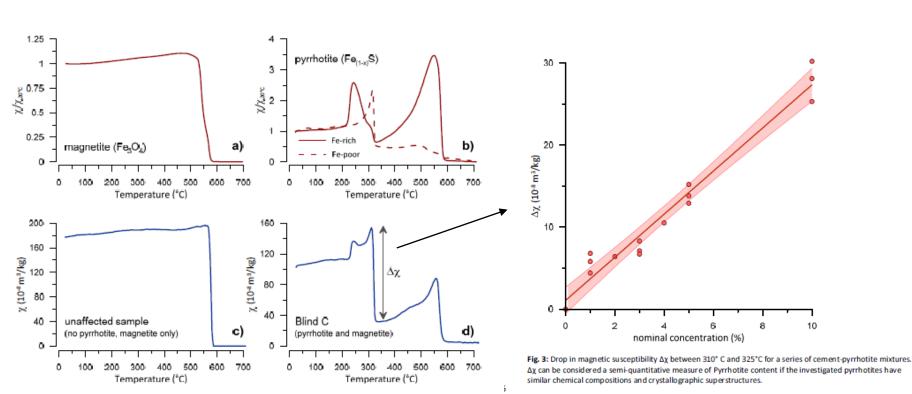
DIONEX ICS-1100 ion chromatography

Release of sulfate ions – accelerated oxidation


Ion Chromatography (IC)

PETROGRAPHIC ANALYSIS

Pyrrhotite Inclusion in Coarse Aggregate (photo courtesy of Nick Scaglione)


Thin Sections of Coarse Aggregate Under the View of Plane Polarized Light (B: Biotite, P: Pyrrhotite, G: Garnet) (photo courtesy of Nick Scaglione)

INVESTIGATION METHODS - THERMOMAGNETIC ANALYSIS

Gneiss and Gurley, 2018 (Trinity College, CT)

Research on Pyrrhotite in Concrete - FUTURE

Long-term Goal:

- Predict deterioration of concrete and structural integrity of basement walls and other structures
- Determine acceptable pyrrhotite limits
- Develop prevention methods

Challenges:

- Highly complex mechanism and various interconnecting parameters
- Laboratory testing at small and large scale at various conditions over longer time periods is needed
- Funding for data collection, testing, forensic analysis and fundamental research is needed

(e.g. research on pyrrhotite in the amount of \$5 million over 4 years just recently funded by the National Research Council Canada, the Quebec government and University Laval, Canada)

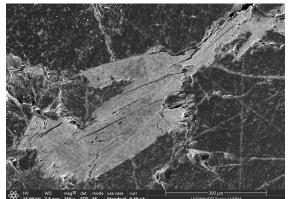
Thank you.

Questions?

Special Thanks to UConn, SOE Yusniel Cruz-Hernandez and Douglas Hendrix

Deterioration of Concrete 06/19/2019 Slide 20/9

Oxidation of Pyrrhotite



Sulfate attack - Volume expansion

delayed ettringite formation

Pyrrhotite

$$Fe_{1-x}S + \left(\frac{10-3x}{4}\right)O_2 + \left(\frac{4-3x}{2}\right)H_2O \rightarrow (1-x)Fe(OH)_3 + SO_4^{2-} + H^+$$

SEM – streaks of FeS in aggregate

Volume expansion

 $3.05 \text{ cm}^3/\text{mol}$

Acid attack+ Formation of gypsum

$$Ca(OH)_2 + H_2SO_4 \rightarrow CaSO_4 \bullet 2H_2O$$
Portlandite

Gypsum

INVESTIGATION METHODS - COMPRESSIVE STRENGTH

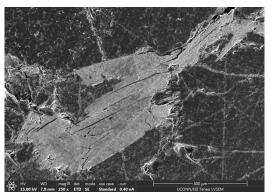
400 kip load

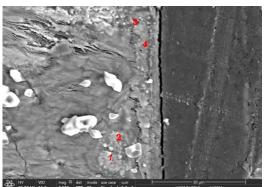
frame

Specimen Preparation

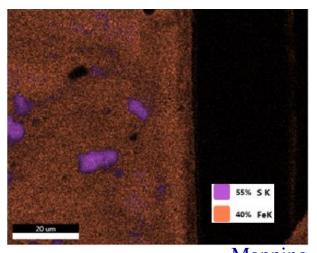
compressive strength reduction of concrete foundation wall 27% to 100%

INVESTIGATION METHODS - SEM + EDX

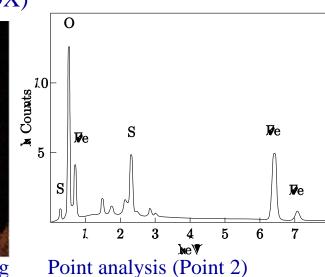

Teno field emission SEM + FDX



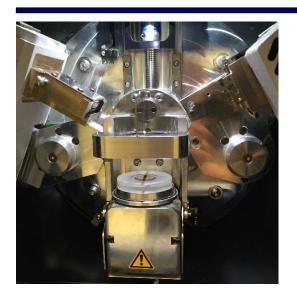
Scanning Electron Microscopy (SEM)


Energy Dispersive X-ray spectroscopy (EDX)

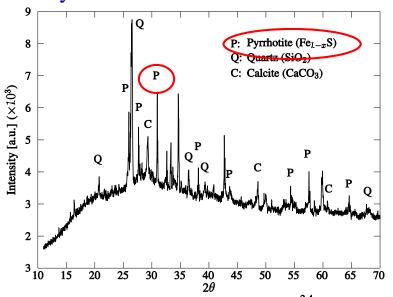
Microstructure (SEM)



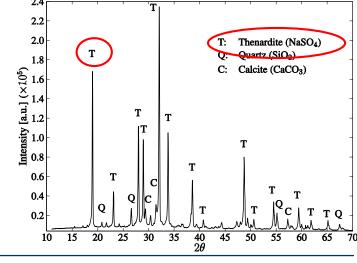
Elementary Composition (EDX)



INVESTIGATION METHODS - XRD



Bruker D2 phaser X-ray diffractometer



Crystal Phase identification

X-Ray Diffraction (XRD)

INVESTIGATION METHODS - XRF

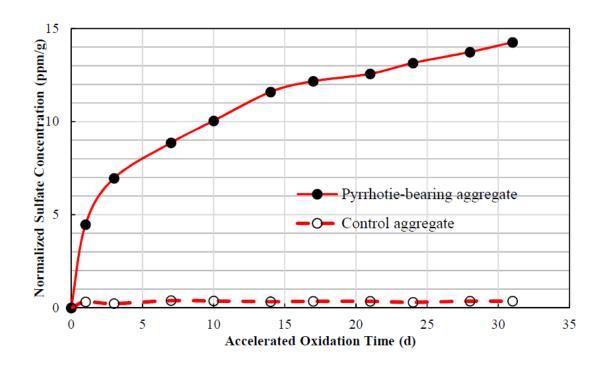
INNOV-X Systems XRF analyzer

Promising Method to detect elemental Sulfur – part of pyrrhotite

Elemental Composition – quarry aggregate

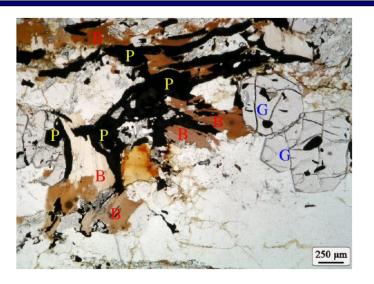
	With brown discoloring	Reference sample					
	Average	Average					
S	2.5%	-					
Fe	6.3%	0.001%					

X-Ray Fluorescence (XRF)


INVESTIGATION METHODS - IC

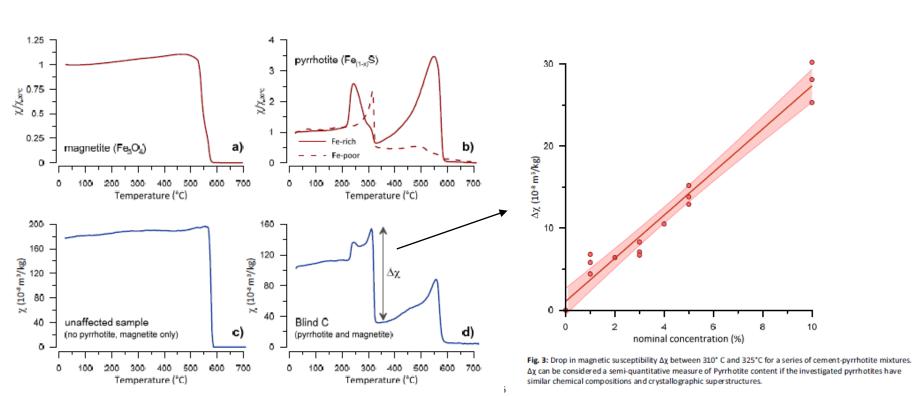
DIONEX ICS-1100 ion chromatography

Release of sulfate ions – accelerated oxidation


Ion Chromatography (IC)

PETROGRAPHIC ANALYSIS

Pyrrhotite Inclusion in Coarse Aggregate (photo courtesy of Nick Scaglione)


Thin Sections of Coarse Aggregate Under the View of Plane Polarized Light (B: Biotite, P: Pyrrhotite, G: Garnet) (photo courtesy of Nick Scaglione)

INVESTIGATION METHODS - THERMOMAGNETIC ANALYSIS

Gneiss and Gurley, 2018 (Trinity College, CT)