FINAL REPORT
 November 202 I

U.S. Route 5 Corridor Study East Windsor, CT

Acknowledgements

This report was sponsored by the Capitol Region Council of Governments (CRCOG) in partnership with the town of East Windsor. TranSystems was the lead consultant with support from Fitzgerald \& Halliday, Inc. (FHI).

Prepared in cooperation with the U.S. Department of Transportation (including its participating agencies) and the Connecticut Department of Transportation. The opinions, findings, and conclusions expressed in this publication are those of the Capitol Region Council of Governments and do not necessarily reflect the official views or policies of the Connecticut Department of Transportation and/or the U.S. Department of Transportation.
Contents
I Executive Summary 1
I.I Existing Conditions
I. 2 Future Conditions
I. 3 Recommendations 3
2 Introduction 4
2.1 Study Area 4
2.2 Study Process 5
3 Existing Conditions Assessment 6
3.I Roadway and Traffic 6
3.I.I Roadway Characteristics 6
3.I. 2 Traffic Conditions 13
3.1.3 Crash History 25
3.1. 4 Access Management 30
3.2 Land Use and Environmental Assets 33
3.2.1 Land Use 33
3.2.2 Zoning 35
3.2.3 Environmental Conditions 37
3.2.4 Physical Features / Constraints 39
3.3 Multimodal Accommodations 40
3.3.1 Pedestrian Facilities 40
3.3.2 Bicycle Facilities 44
3.3.3 Multi-Use Trails 46
3.3.4 Bus Transit Commuter Systems 46
3.3.5 Train Services 49
3.3.6 Park \& Ride Facilities 50
4 Route 5 Future Conditions Assessment 51
4.3 Future Development Potential 51
4.3.I Base Scenario Development 51
4.3.2 Build Scenario Development 53
4.4 Future Traffic Forecasts 56
4.4.I Base Scenario Traffic Forecast 56
4.4.2 Build Scenario Traffic Forecast 60
4.5 Future Traffic Operations 66
4.5.I Base Scenario Traffic Operations 66
4.5.2 Build Scenario Traffic Operations 70
4.6 Future Transit Demand 74
4.6.I Program and Non-Program Demand 74
4.6.2 Commuter Demand Methodology. 75
5 Alternatives Analysis 77
5.I Corridor-wide Enhancements 77
5.I.I Improve Signal Infrastructure 77
5.I. 2 Transit Improvement Opportunities 77
5.2 Bicyclist and Pedestrian Accommodations 86
5.3 Segmental Improvements 87
5.3.1 Evaluation Categories 88
5.3.2 Northern Segment 89
5.3.3 Newberry Road Area 99
5.3.4 Main / Thompson Segment II |
5.3.5 Central Segment 16
5.3.6 Southern Segment 125
6 Implementation Plan and Funding Opportunities 139
6.1 Implementation Plan 139
6.2 Cost Estimating 139
6.3 Funding Opportunities 140
7 Public Involvement and Endorsements 141
Appendix I - Build Development Sites 143
Appendix 2 - Build Scenario Trip Generation 147
Appendix 3 - Traffic Operational Analysis 150
Appendix 4 - Future Transit Demand Calculations 407
Program and Non-Program Demand Methodologies 407
Commuter Demand Methodologies 409
Appendix 5 - Conceptual Plans of Alternatives 410

List of Figures

Figure I: Study Team and Public Involvement Process...............................I
Figure 2: Base Scenario Development Sites.. 2
Figure 3: Build Scenario Development Sites.. 2
Figure 4: Improvement Categories.. 3
Figure 5: Route 5 Corridor Study Project Limits and Street Names 4
Figure 6: Study Team and Public Involvement Process.................................. 5
Figure 7: Total Number of Lanes in the Study Area 7
Figure 8: Route 5 NB at South Windsor Town Line (Google Street View). 7
Figure 9: Route 5 NB at Southern Auto Auction (Google Street View)........ 7
Figure 10: Route 5 NB at Winton Road (Google Street View)...................... 7

Figure II: Route 5 NB at Tromley Road and East Windsor High School (Google Street View).. 8
Figure I2: Route 5 NB South of Thompson Road (Google Street View)..... 8
Figure 14: Route 5 NB Approaching the I-9I Exit 44 Ramps (Google

Street View)

..... 9
Figure 15: Route 5 NB at Walmart (Google Street View)............................ 9
Figure 16: Route 5 NB Approaching Prospect Hill Drive (Google Street View).10
Figure 17: Route 5 NB at Bridge Street / North Road (Google Street View)10
Figure 18: Locations of Deficient Shoulder Widths. 11
Figure 19: CTDOT Continuous Count Station Volumes by Direction.. 14
Figure 20: 2018 Directional Average Daily Traffic. 15
Figure 21: 2018 Day-of-Week Traffic Volume Trends 15
Figure 22: FHWA NPMRDS Average Travel Speeds along U.S. Route 516
Figure 23: Average Weekday Segment Speeds (AM, PM, Off-Peak)... 17
Figure 24: 85th Percentile Weekday Segment Speeds (AM, PM, Off-Peak)17
Figure 25: Weekday AM Peak Hour (7:15-8:I5) Turning Movement Counts. 19

Figure 26: Weekday PM Peak Hour (4:30-5:30) Turning Movement
Counts. 19
Figure 27: Heary Vehicle Traffic Percent by Direction. 20
Figure 28: AM Peak Level of Service (LOS) for Study Intersections 24
Figure 29: PM Peak Level of Service (LOS) for Study Intersections. 24
Figure 30: High Crash Location I: Segment South of Thompson Road... 26
Figure 3I: High Crash Location 2: I-9I Exit 44 and Walmart Intersections26
Figure 32: High Crash Location 3: Bridge Street / North Road (Route 140) intersection and adjacent driveways 27
Figure 33: Land Use Characteristics. 34
Figure 34: Detailed Land Use. 35
Figure 35: Corridor Zoning. 36
Figure 36: Environmental Constraints. 38
Figure 37: Natural Diversity Areas, Slopes, and Wetlands. 39
Figure 38: Pedestrian Facilities 40
Figure 39: Pedestrian Counts at Intersections AM, (PM). 41
Figure 40: Study Area Commuting Patterns for Employment in East Windsor. 43
Figure 41: Study Area Direction of Commuting Patterns to/from Employment /Home 44
Figure 42: Strava Bike Usage 45
Figure 43: AM and PM Bicycle Counts 45
Figure 45: Examples of Bus Stops. 47
Figure 44: 905 Bus Route in Study Area. 47
Figure 46: Bus Route 96 South of the Study Area 48
Figure 47: Base Scenario Development Sites 52
Figure 48: Build Scenario Development Sites. 54
Figure 49: Base Scenario (2040) Intersection Traffic Volume Growth..... 57
Figure 50: Weekday AM Peak Base Scenario (2040) Traffic Volumes... 58
Figure 5I: Weekday PM Peak Base Scenario (2040) Traffic Volume..... 59
Figure 52: Build Scenario (2040) Intersection Traffic Volume Growth 61
Figure 53: Weekday AM Peak Build Scenario (2040) Traffic Volumes... 62
Figure 55: Base Scenario (2040) Weekday AM and PM Intersection
Levels of Service67
Figure 56: Build Scenario (2040) Weekday AM and PM Intersection Levels of Service 70
Figure 57: Transit Alternative I 79
Figure 58: Potential Routing for Transit Alternative 2. 81
Figure 59: Transit Alternative 3 82
Figure 60: Transit Alternative 4 84
Figure 61: Transit Infrastructure Locations 85
Figure 62: Bicyclist and Pedestrian Recommendations 86
Figure 63: Corridor Subdivision for Alternatives Analysis. 87
Figure 64: Northern Segment 89
Figure 65: Northern Alternative I ($\mathrm{N}-\mathrm{I}$) 90
Figure 66: North Alternative I (N-I) Route 140 Inset 92
Figure 67: Northern Alternative 2 (N-2) 93
Figure 68: North Alternative 2 (N-2) Route 140 Inset 95
Figure 69: Northern Alternative 3 ($\mathrm{N}-3$) 96
Figure 70: North Alternative 3 (N-3) Route 140 Inset 98
Figure 71: Newberry Road. 99
Figure 72: Newberry Alternative I (New-I) 101
Figure 73: Newberry Alternative I (New-I) Newberry Road Inset 103
Figure 74: Newberry Alternative 2 (New-2) 104
Figure 75: Newberry Alternative 3 (New-3) 106
Figure 76: Newberry Alternative 4 (New-4) 107
Figure 77: Newberry Alternative 5 (New-5) 108
Figure 78: Newberry Alternative 5 (New-5) Newberry Road Insert. 110
Figure 79: Main / Thompson Segment 111
Figure 80: Main Alternative I (Main-I) 112
Figure 81: Main Alternative 2 (Main-2) 114
Figure 82: Central Segment 116
Figure 83: Central Alternative I (C-I) 117
Figure 84: Central Alternative I (C-I) South Water Street Inset 119
Figure 85: Central Alternative I (C-I) Tromley Road Inset. 120
Figure 86: Central Alternative 2 (C-2) 121
Figure 87: Central Alternative 2 (C-2) South Water Street Inset. 123
Figure 88: Central Alternative 2 (C-2) Tromley Road Inset 124
Figure 89: Southern Segment 125
Figure 90: Southern Alternative I (S-I) (I of 2) 126
Figure 91: Southern Alternative I (S-I) (2 of 2) 127
Figure 92: Southern Alternative I (S-I) Phelps Road Inset. 129
Figure 93: Southern Alternative I (S-I) Stoughton Road Inset 129
Figure 94: Southern Alternative I (S-I) Abbe Road Inset 130
Figure 95: Southern Alternative I (S-I) Scantic Road Inset 130
Figure 96: Southern Alternative $2(\mathrm{~S}-2)$ 131
Figure 97: Southern Alternative 2 (S-2) Phelps Road Inset. 133
Figure 98: Southern Alternative 3 (S-3) (I of 2) 134
Figure 99: Southern Alternative 3 ($\mathrm{S}-3$) (2 of 2) 135
Figure 100: Southern Alternative 3 (S-3) Stoughton Road Inset 137
Figure 101: Southern Alternative 3 (S-3) Abbe Road Inset. 137
Figure IO2: Southern Alternative 3 (S-3) Scantic Road Inset) 138
List of Tables
Table I: Base Scenario Developments 2
Table 2: Build Scenario Developments 2
Table 3: Design Standards II
Table 4: Summary of Existing Geometric Deficiencies 12
Table 5: Historical ADT Volumes (2004-20I3) 13
Table 6: Level of Service (LOS) Summary for Study Intersections. 23
Table 7: Crash History at Intersections (2015-20I7) 28
Table 8: Crash History on Segments (2015-2017) 29
Table 9: Bus Fare Structure 49
Table IO: CTrail Fare Structure. 50
Table II: Base Scenario Developments 52
Table I2: Build Scenario Developments 53
Table I 3: Weekday AM Base (2040) and Build (2040) Growth Summary 64
Table 14: Weekday PM Base (2040) and Build (2040) Growth Summary65
Table 15: Base Scenario (2040) Weekday AM and PM Traffic Operations(I of 2)68
Table I6: Base Scenario (2040) Weekday AM and PM Traffic Operations(2 of 2)69
Table I7: Build Scenario (2040) Weekday AM and PM Traffic Operations 72
Table I8: Build Scenario (2040) Weekday AM and PM Traffic
Operations (2 of 2) 73
Table 19: Program and Non-Program Transit Demand 74
Table 20: Commuter Transit Demand. 76
Table 21: Program and Non-Program Transit Demand 78
Table 22: Commuter Transit Demand. 78
Table 23: Proposed Route 24 Schedule (Courtesy CTtransit) 80
Table 24: Transfer Times for Transit Alternative 3 82
Table 25: Evaluation Category Ratings 88
Table 26: Northern Segment Alternatives. 89
Table 27: Evaluation Criteria for Alternative N-I90
Table 28: Northern Alternative I (N-I) Traffic Operations 91
Table 29: Evaluation Criteria for Alternative N-2 93
Table 30: Northern Alternative 2 (N-2) Traffic Operations 94
Table 3 I: Evaluation Criteria for Alternative N-3 96
Table 32: Northern Alternative 3 (N-3) Traffic Operations 97
Table 33: Newberry Area Alternatives. 100
Table 34: Evaluation Criteria for Alternative New-I 101
Table 35: Newberry Alternative I (New-I) Traffic Operations. 102
Table 36: Evaluation Criteria for Newberry Alternative 2 (New-2) 105
Table 37: Evaluation Criteria for Alternative New-3 106
Table 38: Evaluation Criteria for Alternative New-4 107
Table 39: Evaluation Criteria for Alternative New-5 108
Table 40: Newberry Alternative 5 (New-5) Traffic Operations. 109
Table 4I: Main / Thompson Segment Alternatives I I
Table 42: Evaluation Criteria for Alternative Main-I 112
Table 43: Main Alternative I (Main-I) Traffic Operations II3
Table 44: Evaluation Criteria for Alternative Main-2 I/4
Table 45: Main Alternative 2 (Main-2) 115
Table 46: Central Segment Alternatives 116
Table 47: Evaluation Criteria for Alternative C-I 117
Table 48: Central Alternative I (C-I) Traffic Operations. 118
Table 49: Evaluation Criteria for Alternative C-2. 12 |
Table 50: Central Alternative 2 (C-2) Traffic Operations. 122
Table 51: Southern Segment Alternatives 125
Table 52: Evaluation Criteria for Alternative S-I 126
Table 53: Southern Alternative I (S-I) Traffic Operations 128
Table 54: Evaluation Criteria for Alternative S-2 13 |
Table 55: Southern Alternative 2 (S-2) Traffic Operations. 132
Table 56: Evaluation Criteria for Alternative S-3 134
Table 57: Southern Alternative 3 (S-3) Traffic Operations. 136
Table 58: Implementation Plan. 139
Table 59: Potential Funding Programs 140

I Executive Summary

The Capitol Region Council of Governments (CRCOG) and the Town of East Windsor, in cooperation with the Connecticut Department of Transportation, have initiated the U.S. Route 5 Corridor Study (the Study) to evaluate traffic and development issues along Route 5 in the Town of East Windsor. The purpose of the Study is to develop a comprehensive transportation plan for Route 5 that will: (1) address safety, congestion, and mobility of the transit system, pedestrians, and bicyclists; and (2) assess travel demand growth and its impacts on area roadways including traffic associated with development within the Study Area.

This report is a compilation of the results of the Study, including an analysis of the existing conditions and an assessment of the improvements necessary to accommodate future development.

I.I Existing Conditions

The existing conditions assessment focused on safety and mobility along Route 5 . Key findings were:

- A lack of bicycle and pedestrian accommodations along and across Route 5,
- Minimal transit service,
- Inconsistent road cross-section and adjacent land use throughout the corridor,
- Elevated crash rates at the high-volume intersections with the I-9I Exit 44 ramps and Route 140, and
- Poor traffic operations due to high volumes and malfunctioning traffic signal equipment.

Advisory Committee
Route 5 Advisory Committee
Corridor Study Consultant
TranSystems

Public Involvement
CRCOG - Advisory Committee - General Public - TranSystems
Figure I: Study Team and Public Involvement Process

I. 2 Future Conditions

In order to assess future conditions along Route 5, it was necessary to produce two growth scenarios:

Base scenario - Background growth to 2040, including nearby developments considered likely to be built before 2040. These developments are shown in Figure 2 and Table I.

Build scenario - All growth and developments included in the Base scenario, plus seven additional developments along the corridor. These developments are shown in Figure 3 and Table 2.

These scenarios are not a blueprint for future development of the corridor, but rather a means to determine the traffic impacts of likely and potential land use changes.

Table I: Base Scenario Developments

Development Site	Use	Notes
Sardill Distribution Center*	Commercial	200,000 sq. ft. distribution center
Crossroads Cathedral	Church / Hotel	Church and 90 unit hotel with conference center
MMCT Casino	Recreational / Gaming	Planned casino with over 2,000 gaming positions
Calamar Housing	Residential	122 units of over-55 housing
Montgomery Mill	Residential	160 apartment units
Relocated Train Station	Transportation	Windsor Locks train station serving CTrail and Amtrak service
Metro Park North	Warehouse / Industrial	800,000 sq. ft. distribution center
* Sardilli announced in September 2019 that they would not be developing this site as originally planned.		

* Sardili announced in September 2019 that they would not be developing this site as originally planned.

Figure 3: Build Scenario Development Sites
Table 2: Build Scenario Developments

Development Site	Use	Notes
I - 151 Prospect Hill Road	Hotel with supporting commercial	\| 15 -room hotel with restaurant and retail. Total 54,250 sf
2-49 Prosepct Hill Road	Restaurant	Small-scale restaurant, likely fast or fast-casual. 4,500 sf
3 - Route 5 at Main Street and Route 5 at Thompson Road	Mixed-use commerical	Introduction of neighborhood commerial such as banks and retail with infill at Propsect Hill Plaza. 27,900 sf
4-44 South Main Street	Mixed-use commerical	Expansion of commercial development at Riverview Plaza. 9,500 sf
5-67 South Main Street	Industrial / business park	New industrial, business park or distribution center. 380,000 sf
6- II I South Main Street \& 49 Phelps Road	Industrial / business park	New industrial, business park or distribution center. 380,000 sf
7-248 \& 250 South Main Street	Commercial	Agricultural distribution facility with retail component. 40,000 sf

Key findings of the future conditions assessment were:

- Under the Base scenario, peak hour traffic volumes on Route 5 are projected to increase by 52% to 125% between the I-9I Exit 44 ramps and Route I40;
- Under the Build scenario, this growth is expected to increase to 73% to 154%;
- The increased traffic volumes are projected to result in increased congestion at these intersections under both scenarios;
- Projected traffic growth is lower south of the I-9I Exit 44 ramps (20% to 35% under the Base scenario, 43% to 56% under the Build scenario); and
- Under the Build scenario, several intersections south of I-9I Exit 44 will reach capacity and operate poorly.

I. 3 Recommendations

Recommendations for future improvements are divided into three categories, as described in Figure 4. They range from corridor-wide changes such as installing turn lanes and sidewalks to targeted improvements at individual intersections. These improvements would serve to improve safety and mobility along Route 5 , as well as preparing for new development throughout the corridor.

The Near Term improvements, mainly focusing on pedestrian and safety enhancements, are estimated at $\$ 6.2$ million (2020 dollars). The Mid Term improvements are estimated at $\$ 14.2$ million (2030 dollars) and would maintain acceptable traffic operations under the Base scenario. The Long Term improvements are estimated at $\$ 24.3$
million (2040 dollars) and would accommodate the traffic growth from the Build scenario.

```
Near Term: Improvements that address existing needs, are
relatively low cost and low impact (environmental, ROW) and
could/ should be pursued immediately.
Mid Term: Improvements that address existing future Base
scenario needs, are higher cost and could have potential
environmental and ROW impacts. These alternatives would
either require environmental review (if initiated immediately) or
could have outside actions, such as development, that would
trigger the need to implement them.
```

```
Long Term: Improvements that address future Build scenario
```

Long Term: Improvements that address future Build scenario
needs, are high cost and likely require environmental and ROW
needs, are high cost and likely require environmental and ROW
impacts. These alternatives have outside actions, such as
impacts. These alternatives have outside actions, such as
development, that would trigger the need to implement them.

```
development, that would trigger the need to implement them.
```

Figure 4: Improvement Categories
There are numerous funding sources available for the recommended improvements. These range from Federal, State, and Town funding to public-private partnerships and developer-borne improvements for major traffic generators. In particular, this report may be used as a roadmap for improvements undertaken as new development is attracted to the corridor.

2 Introduction

The Capitol Region Council of Governments (CRCOG) and the Town of East Windsor, in cooperation with the Connecticut Department of Transportation (CTDOT), initiated the U.S. Route 5 Corridor Study (the Study) to evaluate traffic and development issues along Route 5 in the Town of East Windsor. The purpose of the Study is to develop a comprehensive transportation plan for Route 5 that will: (I) address safety, congestion, and mobility of the transit system, pedestrians, and bicyclists; and (2) assess travel demand growth and its impacts on area roadways including traffic associated with development within the Study Area.

2.I Study Area

The Study Area contains Route 5 throughout East Windsor from the Enfield town line to the South Winsor town line, a distance of approximately five miles. From the southern limits of the corridor northerly to its intersection with Main Street, Route 5 is known as South Main Street. From Main Street northerly to the Enfield town line, Route 5 is known as Prospect Hill Road. The Study Area limits and street names are shown in Figure 5. The study includes an assessment of intersecting side street approaches, as well as access and egress for adjacent land uses. The corridor includes highway exit and entrance ramps for Interstate 9 II (I-9I), residential streets, and several businesses. There are also many local destinations on or adjacent to Route 5 such as schools, restaurants, farms, retail, and grocery stores.

Figure 5: Route 5 Corridor Study Project Limits and Street Names

2.2 Study Process

The Route 5 Corridor Study was conducted in a collaborative manner with stakeholder and community involvement, an advisory committee, and technical reviews. The Study was coordinated with other ongoing studies and projects in and around the corridor, including the Windsor Locks rail station, Warehouse Point Planning Study and future development plans along Route 5. A summary of the Study Team and the public involvement process is presented in Figure 6.

There are a number of ways that the Route 5 Corridor Study Team collected and distributed information about the Study including:

- Interested parties lists
- Newsletters
- Webpage (http://crcog.org/2018/05/route-5-east-windsor-corridor-study/)
- E-Blasts
- Survey
- Town Council meetings
- Technical review meetings
- CRCOG Committee meetings
- Stakeholder interviews

Public involvement is discussed in Appendix 5.

3 Existing Conditions Assessment

This chapter provides an assessment of the Route 5 Study Area relative to the existing roadway and traffic; land use and development; pedestrian, bicyclist, and vulnerable user; and transit/commuter systems. Stakeholder input was a key component of the data collection process to help complete the existing conditions assessment. The purpose of the existing conditions assessment is to identify deficiencies in order to establish a baseline against which future conditions and improvement recommendations can be evaluated.

3.I Roadway and Traffic

This section identifies and evaluates the issues, deficiencies, and opportunities of the existing roadway system within the Study Area. It is important to note that the roadway system is part of the overall Route 5 transportation system, other elements of which are assessed in the following sections.

3.I.I Roadway Characteristics

Route 5 is classified as a principal arterial for its approximately five-mile length in East Windsor. Through the majority of the Study Area, Route 5 is two lanes wide with turn lanes provided at intersections. Between Thompson Road and the Walmart driveway, north of the I91 on- and off-ramps, Route 5 has two lanes in each direction with turn lanes. A raised median is provided in this section. Within 600 feet of the Southern Auto Auction main driveway, Route 5 widens to two lanes in each direction without a median. The number of travel lanes and turn lanes on Route 5 within the corridor, as well as the presence of a median, is presented in Figure 7.

South of East Windsor, Route 5 has two lanes in each direction with a 25 -foot-wide median and occasional turn lanes. The roadway continues southerly in this configuration to downtown East Hartford, a distance of approximately seven miles. Traveling north from South

Windsor into East Windsor, Route 5 narrows to an undivided roadway with one through lane in each direction, as shown in Figure 8.

Other than a short southbound left turn lane at Harken's Market, Route 5 remains one lane in each direction throughout the southernmost 1.3 miles of the Study Area. This high-speed rural segment includes signalized intersections at Abbe Road and Stoughton Road as well as dozens of unsignalized driveways. For more information on these driveways, see Section 3.1.4-Access Management, page 30.

Route 5 widens to two through lanes in each direction approximately 600 feet south of the traffic signal at Southern Auto Auction's main driveway, as shown in Figure 9. This four-lane section continues another 600 feet past the signal. There is no median in this area.

[^0]

Figure 7: Total Number of Lanes in the Study Area The next signalized intersection to the north is Phelps Road (Route 191). This three-leg intersection has an exclusive right turn lane on Route 5 northbound.

Figure 8: Route 5 NB at South Windsor Town Line (Google Street View) of houses and condominiums. No turn lanes are provided. This intersection is shown in Figure 10.

The character of Route 5 gradually changes north of Phelps Road (Route 191), serving

Figure 9: Route 5 NB at Southern Auto Auction (Google Street View)
Route 5 continues to the north with one through lane in each direction. On the 0.7-mile segment between Phelps Road (Route 191) and Tromley Road, there are multiple unsignalized intersections at driveways and side streets. One notable intersection is at Winton Road, a residential street serving as the sole access point for dozens

Figure IO: Route 5 NB at Winton Road (Google Street View)

Figure II: Route 5 NB at Tromley Road and East Windsor High School (Google Street View)
fewer commercial or industrial parcels and more residential buildings. The next signalized intersection to the north is at Tromley Road and East Windsor High School, shown in Figure II. This is the only

Figure 12: Route 5 NB South of Thompson Road (Google Street View) traffic signal in the Study Area to have a marked crosswalk. Exclusive left turn lanes are provided in both directions on Route 5. North of Tromley Road are two significant unsignalized intersections: Regina Drive and Riverview Drive. The intersection

with Regina Drive is on the interior of a horizontal curve, limiting sight distance for exiting vehicles. The intersection with Riverview Drive is within 200 feet of the adjacent South Water Street signal. Northbound queues from this traffic signal may extend through the Riverview Drive intersection during peak hours.

The signalized intersection at South Water Street includes northbound and southbound exclusive left turn lanes. North of this signal, the road's character becomes more commercial. A quarter mile to the north, the road cross-section rapidly changes. There are several closely spaced gas station driveways south of Thompson Road as Route 5 widens from a two-lane road to a much wider four-lane road with turn lanes and a raised median, shown in Figure 12. The complexity of this area has led to an increased crash rate relative to the surrounding segments. This increase in crashes is discussed in more detail in Section 3.I.3-Crash History, page 25. The signalized intersection with Thompson Road has two through lanes northbound and southbound, plus a southbound exclusive left turn lane. Between the signals at Thompson Road and Main Street, separated by 400 feet, is an unsignalized intersection with Wagner Lane which is only
accessible from Route 5 southbound. Northbound traffic must perform a U-turn to get to Wagner Lane. This area is shown in Figure 13. The traffic signal at Main Street (unsigned Route 510) runs off the same controller as the signal at Thompson Road due to their proximity. Route 5 has three lanes in each direction here - two through lanes and an exclusive left turn lane. North of this traffic signal, there is an unsignalized intersection with Greenwoods Lane. Access to and from Route 5 northbound is right-in, right-out, and access from Route 5 southbound is right-in only, serving mainly traffic going from Route 5 southbound to Main Street northbound.

Figure I4: Route 5 NB Approaching the l-9I Exit 44 Ramps (Google Street View)

Continuing north, Route 5 gains more lanes as it approaches the I91 Exit 44 ramps. This is shown in Figure 14. Route 5 northbound has two through lanes and two exclusive left turn lanes. Route 5 southbound has two through lanes and exclusive left and right turn lanes. There is no raised median north of the intersection, only occasional painted islands. Crash rates at this intersection are significantly higher than other intersections in the Study Area.

Approximately 500 feet north of the I-9I ramp intersection is another traffic signal serving Walmart on the east side of Route 5 and two restaurants and a bank on the west side. This is another area of transition - Route 5 narrows from two through lanes in each

Figure 15: Route 5 NB at Walmart (Google Street View) Route 5 has one through lane and one exclusive left turn lane. This merge is shown in Figure 15.

North of this signal, the character of Route 5 changes. Traffic signals are more regularly spaced, travel lanes are narrower, the road climbs a hill, and trees line both sides of the road. Adjacent land uses are mixed and there are fewer curb driveways.

The next signal to the north primarily serves Big Y and Ethos Energy. Route 5 has one through lane in each direction plus a northbound exclusive left turn lane and a southbound exclusive right turn lane.

Figure 16: Route 5 NB Approaching Prospect Hill Drive (Google Street View)

750 feet north of this signal is an unsignalized intersection with Prospect Hill Drive, residential street serving over 100 houses. This intersection is shown in Figure 16. No exclusive turn lanes are provided on Route 5.

The next signal is an alternative access point to Big Y , and formerly served the Showcase Cinemas. Route 5 has one through lane in each direction plus a northbound exclusive left turn lane. North of this signal, Route 5 begins to head downhill, and the surrounding land uses become predominantly commercial.

The final signalized intersection in the Study Area is at Bridge Street / North Road (Route 140), shown in Figure 17. Route 5 widens near this intersection to one through lane in each direction, exclusive left turn lanes in each direction, and a northbound exclusive right turn lane. The intersection itself is skewed with steep grades on its approaches, and it is a complex area due to the surrounding development and numerous driveways. Crash rates here are higher than at most other intersections in the Study Area.

Figure 17: Route 5 NB at Bridge Street / North Road (Google Street View)

Between this signal and the Enfield town line, Route 5 has one through lane in each direction and serves a mix of uses. One notable business is Comfort Inn, 500 feet north of Route 140.
Route 5 has a northbound exclusive left turn lane for the Comfort Inn driveway. The road continues into Enfield as a two-lane road.

In terms of geometry, the horizontal alignment of Route 5 exhibits gentle curvature within the Study Area. The vertical geometry of Route 5 is generally level south of the I-9I Exit 44 intersection. North of this intersection, Route 5 rises at approximately 5% for one quarter mile, then has a gentler uphill slope of approximately 2% before going downhill at approximately 2% as it approaches Route 140.

3.I.I.I Roadway Standards

This section presents the design standards for Route 5. According to the CTDOT Highway Design Manual 2003 Edition (HDM), the following conditions apply:

- Principal arterial roadway functional classification
- Intermediate environment

The posted speed limit in the Study Area is 45 mph , which indicates a 50 mph design speed should be assumed. The design standards for Route 5 are shown in Table 3. The values shown indicate either the appropriate range or minimum value. Principal urban arterial roadways balance access to adjacent commercial and residential uses with mobility of travelers connecting to statewide and interstate access points.

Table 3: Design Standards

Design Element	Design Standard
Lane Width	$\mathrm{II}-\mathrm{I} 2^{\prime}$
Shoulder Width	$4^{\prime}-8^{\prime}$
Sidewalk Width	5^{\prime}
Bicycle Lane Width	5^{\prime}
Minimum Radius	$665^{\prime}(\mathrm{e}=4 \%)$
Stopping Sight Distance	$360^{\prime}(45 \mathrm{mph})$

3.I.I. 2 Geometric Conditions Review

Using a combination of field observations, field measurements, and aerial photographs, this section provides an assessment of the geometric characteristics of Route 5 to determine where the existing roadways do not meet the current CTDOT design standards. Table 4 , summarizes the results of this review.

There is one location, at the intersection of Showcase Cinema and Route 5, where the travel lanes in each direction measure ten feet. This lane width is noted as a deficiency.

Roadway shoulders within the Study Area range from nonexistent to over six feet. Shoulders are used as bypass lanes for through traffic to get around vehicles waiting to turn left or right; where shoulders are narrow or absent, this is not possible. Figure 18 highlights locations with deficient shoulder widths.

Figure 18: Locations of Deficient Shoulder Widths
Horizontal curvature of a road affects a driver's ability to see far enough to be able to stop safely to avoid a collision. Curves can also contribute to a loss of control of a vehicle if speed limits are not adhered to. The CTDOT Design Manual suggests that a stopping sight distance of 360 feet is required for level surfaces with a posted speed limit of 45 mph . Some side streets may have deficient intersection sight distance due to landscaping or terrain obstructing sight lines.

Steep grades can present safety and operational challenges by restricting sight lines and increasing the distance a vehicle needs to safely stop. During inclement weather, steep grades can also contribute to the loss of traction between a vehicle's tires and the pavement surface. The CTDOT Highway Design Manual suggests that a 7% grade should be considered the maximum for an arterial. Route 5 is located near the Connecticut River and has stretches that are within wetlands and are relatively flat. North of the I-91 Exit 44 intersection, Route 5 has rolling terrain, yet the slope does not exceed 7\%.

Route 5 generally has a rural character and has minimal pedestrian amenities such as sidewalks. There are no sidewalks along Route 5 anywhere in the Study Area. There is only one crosswalk, at Tromley Road, connecting a sidewalk at East Windsor High School with a concrete landing on the east side of Route 5. Neither the sidewalk

Table 4: Summary of Existing Geometric Deficiencies

Existing Feature/Location	Existing Value (Approx.)	Design Standard Value	Comments
Lane Width			
Between Prospect Hill Drive and Bridge Street (Route 140)	$10^{\prime}-11$ ' varies	11'-12'	Less than II' is deficient
Shoulder Width			
Between Stoughton Road and Phelps Road (Route 191) / access to Southern Auto Auction	2'-6' varies	4'-8'	Deficient at the approaches to the intersection
At Tromley Road Intersection (50'-100'radius)	2'-4' varies	4'-8'	Deficient at the approaches to the intersection
Between Pasco Drive and Regina Drive	2'-5' varies	4'-8'	Deficient at the approaches to the intersection
Between Thompson Road and Newberry Road	0'-5' varies	4'-8'	Deficient at the approaches to the intersection
Between Thompson Road and Main Street in Northbound direction	$0 \times$	4'-8'	Deficient, no shoulder present.
Between Walmart access and Showcase Cinema access in Northbound direction	$0^{\prime}-4{ }^{\prime}$ varies	$4^{\prime}-8$	Deficient at the approaches to the intersection
Sidewalk Width			
Study Area	N/A	5' min.	There are no sidewalks along Route 5, only on cross streets. Curb ramps at Tromley Road are not ADA-compliant.

3.I. 2 Traffic Conditions

The existing traffic conditions assessment includes measures of traffic volumes, travel speeds, and traffic operations. These measures are used to quantify and evaluate trends and identify deficiencies.

3.I.2.I Daily Volumes

On State roadways, CTDOT measures the average daily traffic (ADT) volumes approximately every three years. This data is collected with an automatic traffic recorder (ATR). The most recent counts on Route 5 were in 2013. CTDOT also maintains a continuous count station just north of the Walmart driveway. The historical ADT volumes are presented in Table 5, below, and Figure 19, page 14. Historically, the ADT has generally been highest south of the I-9I Exit 44 ramps, with volumes ranging from 14,300 to 19,400. Between the I-91 Exit 44 ramps and Bridge Street/ North Road (Route 140),
volumes in this area demonstrate that Route 5 is a major connection for traffic between South Windsor and I-9I to the north. North of I91 Exit 44, this north-south traffic uses I-9I instead, resulting in lower volumes on this section of Route 5.

Traffic growth at the continuous count station has been variable, slowly decreasing between 2005 and 2013. The Walmart just south of the continuous count station was opened in late 2013, resulting in the significant increase in volumes from 2013 to 2014.

What is Average Daily Traffic (ADT)?
ADT is the total two-way traffic volume passing through a defined segment of roadway in a 24-hour period. ADT is measured in vehicles
per day (vpd). volumes have ranged from 7,900 to II,800. Traffic volumes have been lowest north of Bridge Street / North Road (Route 140), ranging from 7,200 to 7,900 . The location with the highest volume is historically between Main Street and the I-9। Exit 44 ramps. This trend continues with traffic data collected 2018. The high

Table 5: Historical ADT Volumes (2004-2013)

Location On Route 5		CTDOT ADT (Vehicles per Day			
		2013	2010	2007	2004
	North of Bridge Street / North Road (Route I40)	7,600	7,700	7,900	7,200
	South of Bridge Street / North Road (Route 140)	9,600	10,700	11,400	10,100
	South of Prospect Hill Drive	7,900	8,000	8,500	10,100
	North of I-9I Exit 44 ramps	10,700	11,800	10,600	10,100
	North of Main Street	17,400	19,400	18,100	17,100
	North of S. Water Street	17,300	16,600	15,800	17,100
	North of Phelps Road (Route 191)	14,800	16,000	16,400	17,200
	South of Phelps Road (Route 191)	16,100	16,000	18,900	17,900
	South of Stoughton Road	15,900	18,500	14,700	15,800
	North of Scantic Road	14,300	17,800	15,500	15,800
	North of Sullivan Avenue (Route 194)	15,300	19,000	16,900	16,600

Figure 19: CTDOT Continuous Count Station Volumes by Direction
ATR counts collected in 2018 as part of the Study are shown in Figure 20. The directional counts shown were adjusted for day-of-week and month-of-year based on volume trends obtained from the CTDOT continuous count station. North of the I-91 Exit 44 ramps, these 2018 volumes closely match the CTDOT 2013 ATR counts. South of the ramps, the 2018 ATR counts show a clear increase over the 2013 volumes. The fact that southbound volumes are higher than northbound volumes in this area, in conjunction with a closer analysis of hourly trends, field observations, and stakeholder interviews, indicates that southbound traffic uses Route 5 to bypass congestion on I-9I during peak periods.

2018 ATR counts were collected on Tuesday, April I7 through Thursday, April 19 in order to assess the day-to-day variation in traffic patterns throughout the corridor, especially those related to the Southern Auto Auction activity on Wednesdays. Traffic volumes averaged across the four southernmost ATRs are shown in Figure 2I. Travel patterns were similar during all three days. On Wednesday, the morning peak exhibited a moderate increase in traffic headed towards Southern Auto Auction, and there was also an increase in traffic leaving Southern Auto Auction throughout the middle of the day. Heavy vehicle counts also increased during these periods. The overall increase in traffic between 5 AM and 4 PM was 8\%.

Figure 20: 2018 Directional Average Daily Traffic

Figure 21: 2018 Day-of-Week Traffic Volume Trends

3.I.2.2 Travel Speeds

The travel speed data presented in this section is from the Federal Highway Administration (FHWA) National Performance Management Research Data Set (NPMRDS). FHWA has made this data set available to States and Metropolitan Planning Organizations (MPOs) as a tool for performance measurement. The NPMRDS data is validated and calibrated quarterly. The NPMRDS average travel speeds are shown in Figure 22. These average travel speeds include delays caused by traffic signals, turning vehicles, bus stops, and pedestrian crossings.

Figure 22: FHWA NPMRDS Average Travel Speeds along U.S. Route 5
Between Scantic Road and Stoughton Road, the average travel speeds are approximately 35 mph and are the highest observed within the study area. From Stoughton Road in northern direction, the average speeds degrade to between 35 mph and 30 mph until South Water Street; further north the speed decrease even further to under 30 mph . Throughout the Study Area, the posted speed limit is 45 mph .

In addition to FHWA travel speed data, the study team collected average and 85th percentile weekday spot speeds at the 2018 ATR count locations. Figure 23 and Figure 24 illustrate the speeds during AM, PM and Off-Peak (OP) periods. These data points do not include delay from traffic signals, turning vehicles, bus stops, and pedestrian crossings as the data points were selected between major intersections, clear of such influence.

What is 85th Percentile Speed?
The 85th Percentile Speed is the speed that 85 percent of vehicles do not exceed. Another way of looking
at this is that only 15 percent of vehicles go faster than this speed, and 85 percent go at or below this speed.

Figure 23: Average Weekday Segment Speeds (AM, PM, Off-Peak)

Figure 24: 85th Percentile Weekday Segment Speeds (AM, PM, Off-Peak)

The spot speed data between larger segments of roadway without traffic signals shows vehicles traveling at or above the speed limit during off peak, highlighted in red. Similar to the FHWA data, speeds are lower north of Tromley Road throughout the day and in both directions. This delay may be caused by several factors, including high volumes, queues at traffic signals, vehicles turning at unsignalized intersections, heavy vehicles, and bus stops without pullouts.

3.I.2.3 Peak Hour Volumes

The Study Team collected turning movement counts (TMCs) at signalized intersections along Route 5 in order to assess traffic operations in the peak periods. The TMC data was collected in April 2018 for the weekday counts. The weekday morning peak hour TMCs are presented in Figure 25, page 19. The weekday afternoon peak hour turning movement counts are presented in Figure 26, page 19.

In the northbound direction, traffic volumes are high throughout the southern portion of the Study Area, typically 800 to 900 vph in both peaks. At the I-9I Exit 44 ramps, the majority of northbound traffic turns left to access the freeway - 73% in the AM peak and 59% in the PM peak. The highest southbound volume on Route 5 was observed between South Water Street and Tromley Road, with southbound volumes of approximately $\mathrm{I}, \mathrm{I} 00$ vehicles per hour (vph) and I,200 vph during the AM peak and PM peak, respectively.

North of the I-9I Exit 44 ramps, traffic volumes are significantly lower in both directions. Northbound volumes are generally 200 to 300 vph in the AM peak and 500 to 600 in the PM peak. Southbound volumes vary less, with 250 to 300 vph in the AM peak and 350 to 400 vph in the PM peak.

Some intersections exhibit very different travel patterns in the AM and PM peaks. At commercial driveways (Walmart, Big Y), turning volumes are much higher in the PM peak. This is also apparent at the I-9I Exit 44 intersection, where the PM peak sees more cars turning left off the ramps, many of whom then turn right into Walmart or left into the restaurants. Scantic Road, Tromley Road, and Bridge Street / North Road (Route 140) are heavily directional, with most traffic heading west in the AM peak and east in the PM peak. Southern Auto Auction has high turning volumes only in the AM peak.

Figure 25: Weekday AM Peak Hour (7:I5-8:I5) Turning Movement Counts

Figure 26: Weekday PM Peak Hour (4:30-5:30) Turning Movement Counts
3.I.2.4 Heavy Vehicle Volumes

ATR data collected by the study team in 2018 shows that heavy vehicles, including trucks and buses, comprise 5% to 16% of the daily traffic volumes on Route 5, as illustrated in Figure 27. The highest heavy vehicle percentages are south of the I-9I Exit 44 ramps , where 9% to 16% of vehicles are trucks or buses. This is largely due to the major commercial and industrial uses on this stretch of Route 5 and the adjacent section in South Windsor.

Figure 27: Heavy Vehicle Traffic Percent by Direction

3.I.2.5 Traffic Operations

The existing conditions assessment included an evaluation of congestion and delay at the fourteen signalized intersections during the weekday AM peak hour and the weekday PM peak hour. The level of service (LOS) was determined for each intersection based on the average delay (in seconds per vehicle, sec/veh) that motorists experience traveling through an intersection. LOS can be determined for both signalized and non-signalized intersections. A capacity analysis was developed using the Synchro traffic analysis software, the peak hour turning movement volumes, and the traffic signal timing plans obtained as part of this existing conditions analysis.

The intersections in the Study Area operate at a LOS E or better during the studied peak periods. For the Route 5, LOS D or better represents an acceptable degree of congestion; LOS E and F are generally considered to be an unacceptable degree of congestion. A summary of the LOS results is presented in Table 6, page 23, as well as illustrated in Figure 28 and Figure 29, page 24.

In addition to LOS, the queue lengths were analyzed for all approaches to the study intersections

What is Level of Service (LOS)?

LOS for an intersection is a qualitative measure of traffic operations that reflects the delay experienced by vehicles at the intersection. LOS values range from A to F. LOS A represents the best operational conditions with little delay. LOS F represents generally congested conditions with long delays
and traffic queues. using Synchro/SimTraffic and observed in the field. As a measure of the efficiency of the signal system, it is important to determine if vehicles queue into adjacent intersections, hindering their operation. Long southbound queues were observed during both peak periods, and northbound queues were also substantial in the PM peak. Queues at Phelps Road (Route 191), South Water Street, Thompson Road, and Main Street were observed to reach adjacent intersections.

What is Closed-Loop System?

A closed-loop system consists of traffic signals that are interconnected
thru a master controller thus
providing coordinated signal timings.

Synchronizing the traffic signal cycles of adjacent signals, also known as coordination, can be used to reduce delays and queueing on an arterial roadway. The traffic signals throughout the Study Area are connected to a closed-loop system controlled by the CTDOT Highway Operations Center in Newington. The majority of these signals are coordinated during peak hours using timing plans that are updated every few years to account for changes in traffic.

Overall the sources of delay during AM and PM peaks are:

- Irregular signal spacing - it is recommended that intersection spacing along an arterial roadway should be regular, with constant distances between traffic signals. For rural areas, a minimum spacing of one-half mile is recommended to regulate traffic flow and preserve capacity along arterial routes, with one-mile spacing considered desirable. When the spacing between signals falls below one-quarter mile (1,320 feet), the traffic flow along the route may be disrupted. The ability of the route to carry through traffic will decrease, travel speeds may decrease, and delays and queues may develop at intersections. It is very difficult to maintain signal coordination when intersection spacing is irregular, as is the case on Route 5.
- School buses - Multiple school bus routes use Route 5 within the Study Area. Some of these buses force traffic in both directions to stop completely and yield to students crossing the road to board the bus. In addition to the school bus routes along Route 5, East Windsor High School has school buses dropping off students during the morning peak. As a result of this, the traffic signal at Tromley Road and East Windsor High School is not coordinated during part of the morning peak, resulting in additional delay for through traffic.
- Heavy vehicles - Route 5 carries a high percentage of trucks and buses, especially south of the I-9I Exit 44 ramps. This is compounded by car carriers going to and from Southern Auto Auction on Wednesdays. These vehicles contribute to congestion because of their size and their acceleration characteristics. Drivers tend to leave larger front and rear gaps around trucks, thus decreasing the roadway capacity and increasing queue length. Slow acceleration at intersections is a challenge for signal coordination and increases the speed differential, breaking up the groups of vehicles that benefit from coordination.
- Turning vehicles - Along the Route 5 corridor, vehicles waiting to turn at intersections generally block the through lane. Depending on the shoulder width available, through vehicles may be able to bypass turning vehicles, but they generally slow down when doing so. At some intersections, a left turn lane is provided in lieu of shoulders. This significantly improves through capacity when there are many left turns, though without a shoulder, slowing or stopped right-turning vehicles inhibit the traffic flow. There are many unsignalized intersections along the Study Area, including numerous driveways, contributing to delay.
- Broken detectors - Vehicle detectors are a critical component of traffic signal design. Detectors activate and extend signal phases, allowing the signal to adapt its timings to meet traffic demand. When a detector malfunctions, the signal operates on an irregular or preset cycle and does not correctly respond to traffic demand, causing delays. Broken detectors are a common complaint among stakeholders, and field observations confirm that some phases are being called without vehicles present.

Table 6: Level of Service (LOS) Summary for Study Intersections

Silver Lane Study Intersection	Weekday AM		Weekday PM	
	LOS	Delay (sec/veh)	LOS	Delay (sec/veh)
	B	10.4	A	6.7
Abbe Road	A	9.1	A	6.2
Stoughton Road	A	6.0	B	12.3
Southern Auto Auction	A	6.8	A	7.2
Phelps Road (Route I9I)	B	$1 \mathrm{II.6}$	D	39.3
Tromley Road	E	58.5	B	19.8
South Water Street	B	16.5	C	24.8
Thompson Road	B	15.4	B	11.3
Main Street	B	10.7	B	13.6
l-9I Exit 44 ramps	E	56.4	E	73.9
Walmart Driveway	B	10.5	B	16.8
Big Y/Ethos Energy Driveway	A	3.5	A	6.9
Showcase Cinemas Driveway	A	2.3	A	3.9
Bridge Street / North Road (Route I40)	D	39.5	D	37.1

Figure 28: AM Peak Level of Service (LOS) for Study Intersections

Figure 29: PM Peak Level of Service (LOS) for Study Intersections

3.1. 3 Crash History

Crash data for Route 5 and its intersecting roadways was obtained from the University of Connecticut (UConn) Connecticut Crash Data Repository (CTCDR) for the three-year period from January I, 2015 through December 3I, 2017. A total of 205 crashes were recorded in the corridor, 37% of which resulted in injuries. Crash rates were calculated for each intersection and segment.

The following conclusions were drawn from the crash data:

- Crash rates are highest in the north end of the Study Area, but severity is highest in the south, likely due to the higher speed differential.
- There were multiple rear-end crashes between intersections caused by congestion.
- There were many angle crashes at driveways, especially in the vicinity of Thompson Road and Bridge Street / North Road (Route I40).
- Three accident cluster locations were identified with detail graphics:
- Figure 30, page 26: Segment south of Thompson Road
- Figure 3I, page 26: I-9I Exit 44 and Walmart intersections
- Figure 32, page 27: Bridge Street / North Road (Route 140) intersection and adjacent driveways
[Continued on page 26]

Intersection Crash Rate:

Crash rate at intersection is calculated as follows:

```
Rate }=\frac{1,000,000*No.Crashes}{305* Yarsof Daly Tra/fle
```


Road Segment Crash Rate:

Crash rate for road segments is calculated as follows:
 Rate $=1,000,000,0000 *$ No. Crashes

Figure 30: High Crash Location I: Segment South of Thompson Road

Figure 3 I: High Crash Location 2: I-9I Exit 44 and Walmart Intersections

Figure 32: High Crash Location 3: Bridge Street / North Road (Route I40) intersection and adjacent driveways

- Nearly half of crashes were rear-ends, a common collision type attributed to vehicles following too closely.
- Approximately 10% of crashes involved sideswipes, attributed to improper passing maneuvers or improper lane change, and generally clustered around merges.
- Approximately 12% of crashes involved angle crashes, attributed to turning vehicles failing to yield the right-of-way, and generally resulting in more severe injuries.
- At the I-9I Exit 44 ramps, left turns are protected-only; however, there were still several angle crashes between left-turning and through vehicles, indicating a potential red-light-running problem.
- The overall injury rate and severity exceed the statewide average for similar facilities, especially in the southern part of the Study Area.
- There were no fatalities on Route 5 within this three-year period.

Table 7, page 28, presents a summary of the crash data for intersections in the Study Area. In the three-year data period, there were II4 crashes at intersections. Half of the study intersections had rear-end collisions as one of the most prevalent collision types. 33% of crashes at intersections resulted in an injury. The amount of traffic using the intersection is represented in million entering vehicles (MEV) per year, and the crash rate is represented in crashes per MEV.

Table 8, page 29, presents a summary of the crash data on segments within the Study Area; that is, crashes that were not related to intersections. In the three-year data period, there were 91 crashes between intersections. 42% of crashes between intersections resulted in an injury. The amount of traffic using a segment is represented in hundred million vehicle miles traveled (HMVMT) per year, and the crash rate is represented in
crashes per HMVMT. The crash rate corrects for the exposure of the segment (traffic volumes, number of years of data, and length of roadway segment) in order to enable comparison between roadway segments. The crash rate does not account for any other differentiating factors such as geometrics or cross section.

Table 7: Crash History at Intersections (2015-20I7)

Intersection Location	Total Crashes in Data Period	Percent Injury	MEV / year	Crash Rate (Crashes per MEV)
Scantic Road	7	29%	7.1 I	0.33
Abbe Road	5	60%	7.02	0.24
Stoughton Road	6	67%	7.07	0.28
Southern Auto Auction	4	50%	7.47	0.18
Phelps Road (Route I9I)	7	29%	7.12	0.33
Tromley Road	7	43%	7.67	0.30
South Water Street	2	0%	7.8	0.09
Thompson Road	5	40%	8.35	0.20
Main Street	8	38%	8.16	0.33
I-9I Exit 44 ramps	28	29%	10.96	0.85
Walmart Driveway	10	20%	4.96	0.67
Big Y / Ethos Energy Driveway	\mathbf{I}	100%	3.99	0.08
Showcase Cinemas Driveway	2	0%	3.62	0.18
Bridge Street / North Road (Route I40)	22	27%	9.71	0.76
Subtotal	$\mathbf{1 1 4}$			

Table 8: Crash History on Segments (2015-2017)

Segment Location	Total Crashes in Data Period	Percent Injury	HMVMT I year	Crash Rate (Crashes per HMVMT)	Most Prevalent Collision Type
Scantic Road to Abbe Road	10	30\%	0.066	58	Front to Front / Sideswipe
Abbe Road to Stoughton Road	4	50\%	0.068	58	Front to Rear
Stoughton Road to Southern Auto Auction	8	38\%	0.068	190	Front to Rear
Southern Auto Auction to Phelps Road (Route 19I)	7	71\%	0.068	116	Front to Rear
Phelps Road (Route 191) to Tromley Road	8	75\%	0.070	58	Front to Rear
Tromley Road to South Water Street	7	43\%	0.070	79	Front to Rear
South Water Street to Thompson Road	19	42\%	0.075	288	Front to Rear / Sideswipe
Thompson Road to Main Street	3	33\%	0.075	239	Angle
Main Street to l-91 Exit 44 ramps	6	0\%	0.075	109	Front to Rear
I-91 Exit 44 ramps to Walmart	2	0\%	0.038	241	Front to Rear
Walmart to Big Y / Ethos Energy	2	50\%	0.038	63	Other
Big Y/Ethos Energy to Showcase Cinemas	4	25\%	0.035	141	Front to Front / Angle
Showcase Cinemas to Bridge Street / North Road (Route I40)	4	50\%	0.035	135	Front to Rear
Bridge Street / North Road (Route I40) to Enfield town line	7	43\%	0.028	219	Front to Front
Subtotal	91				

3.I. 4 Access Management

Access Management strategies are used to control access to roadways in order to improve traffic operations, reduce the number of vehicle conflicts, and reduce the number of crashes. These strategies generally include increased spacing between access points, dedicated turn lanes or roundabouts, where appropriate, median treatments, and right-of-way management. Some examples of these strategies are shared drives, one-way drives, two-way left-turn lanes (TWLTL), left-turn prohibitions, and maintenance of sight lines.

In the Study Area, there are a number of commercial and residential driveways along the corridor. As new development and redevelopment is planned along the corridor, it is important to consider the management of access points as part of the site plan approval process. This section contains a review of the existing driveways and access management deficiencies. These deficiencies were identified by field visit, stakeholder interviews, a review of crash data, and aerial photos.

There are approximately 200 driveways along Route 5 in East Windsor, equaling around 40 driveways per mile. These range from narrow residential driveways to heavily used business access points. In some locations, there are very wide curb cuts with poorly defined boundaries. These dense and poorly delineated driveways are located primarily south of the I-9I Exit 44 ramps, but are frequent throughout the Study Area and present challenges to motorized and non-motorized travel. Route 5 serves a variety of users, including a significant number of heavy vehicles. While access management practices recommend compact driveways, it is clear that certain locations should be designed to accommodate the unique types of vehicles that are primarily expected to access the property, including trucks and large trailers.

3.I.4.I Scantic Road to Abbe Road

This segment of Route 5 begins at the southern edge of the Study Area and continues to the intersection of Abbe Road. The majority of this segment is a two-lane roadway with one lane in each direction. A southbound exclusive left turn lane is provided for Harken's Market. Other driveways

What is Access Management?

Access Management is the proactive management of vehicular access points to land parcels adjacent to all manner of roadways. Good access management promotes safe and efficient use of the transportation network. AM encompasses a set of techniques that state and local governments can use to control access to highways, major arterials, and other roadways. (FHWA)

do not have protected turn lanes along this segment. The access management deficiencies in this segment relate to driveways adjacent to intersections, wide curb cuts, and the proximity of adjacent commercial driveways.

Generally, driveways should be greater than 150 feet from an intersection. Access points in close proximity of the intersection add to the complexity of an environment for all users, including bicyclists and pedestrians navigating the crossing. This is the case just north of Abbe Road, with a commercial driveway approximately 100 feet from the signal.

3.I.4.2 Abbe Road to Stoughton Road

The 0.4 -mile segment of Route 5 from Abbe Road to Stoughton Road is one lane wide in each direction. There are no turning lanes, however wide shoulders are provided that can be used to bypass turning vehicles. This area serves a variety of development, from residential farm houses to businesses with wide driveways and extensive parking facilities abutting the corridor.

3.I.4.3 Stoughton Road to Phelps Road (Route 191)

North of Stoughton Road, Route 5 widens to two lanes in each direction to provide additional capacity through the signal at Southern Auto Auction. The Southern Auto Auction facilities extend beyond one access point, with multiple parking facilities on both sides of the corridor and additional access via intersecting streets. The employee parking lot is accessed via Phelps Road (Route 191). Within the 0.5mile segment, on the west side of the corridor, a mobile home park at Fairway Drive provides single unit housing. The access to Fairway Drive is provided via two wide driveways. Across from Fairway Drive are wide curb cuts, including multiple access points to the same commercial establishments. Similarly, St. Philip Church has two access points for parishioner parking with pullouts for optional drop-offs. Next to St. Philip Church, there are two residential houses with driveways 15 feet apart. Next, Nonna's Pizza shares wide access point with A-I Auto Wholesalers, Windsor Auto Group, and Rick's II Auto Repair establishments. Their driveway is a wide curb cut with two islands to channelize traffic. Route 5 at Phelps Road (Route 191) is signalized and signed as a T-intersection; however, there is a residential driveway present as well, operating independently of the signal. Route 5 has a northbound right turn lane.

The access management deficiencies in this segment pertain to the proximity of adjacent commercial driveways, closely

Adjacent / Shared Commercial Driveways and Wide Curb Cut (140-142 S. Main St.)
 (Abbe Road)

Mix of Residential and Commercial Space

Mix of Residential and Commercial Space I Adjacent Commercial Driveway (154-I83 S. Main St.

Residential Driveway across from signalized intersection (I34 S. Main St.)
spaced driveways, including at signalized intersections, and redundant driveways. Businesses should not have more driveways than are required to maintain site access and operations. Redundant two-way driveways should be closed or converted to one-way to minimize conflict points.

3.I.4.4 Phelps Road (Route 191) to Tromley Road

This segment of Route 5 is 0.7 miles long with left turn lanes at the Tromley Road intersection. Shoulder widths vary from zero to ten feet wide. From an access management perspective, there are limited issues on this segment, aside from redundant two-way driveways.

3.I.4.5 Tromley Road to Thompson Road

The 0.8 -mile segment of Route 5 from has left turn lanes at the intersections with South Water Street and Thompson Road. There are redundant two-way drives and adjacent closely spaced commercial driveways.

3.I.4.6 Thompson Road to I-9I Exit 44 ramps

The access point to Wagner Lane is approximately 100 feet away from the intersection of Route 5 and Main St (unsigned Route 510). Having adjacent intersections so close together leads to uncertainty for turning vehicles and inhibits signal coordination.

Redundant Driveway (IO7B S. Main St)

Redundant Driveway (82 S. Main St)

3.I.4.7 North of I-9I Exit 44 ramps

Access management principles are more closely followed in this area, with greater spacing between access points and fewer redundant driveways. However, there is a greater number of driveways around the intersection of Route 5 and Bridge Street / North Road (Route I40), with driveways less than 250 feet from the traffic signal on all approaches. Residential driveways are closely spaced as well.

Close spacing between access to Wagner Ln and Main St

3.2 Land Use and Environmental Assets

An assessment of the existing land use conditions in the corridor and the development potential sets the framework for evaluating potential future conditions. Future development trends will be informed by the market conditions as well. This is considered in the following section of the existing conditions report, which, along with the future land use scenario, can build corridor-wide themes and identify regional strategies that will help create a more dynamic economic environment supportive of progress towards the land use vision for the community.

Development in the study corridor is diverse. There is a mix of uses and densities throughout which is sometimes quite disparate, yet an overall pattern can be discerned of well-formed centers, clusters of activity, and then dispersed variable land uses sprawled in between. The following observations about land use issues and opportunities can be made:

3.2.I Land Use

Land use and the transportation system each influence one another in a dynamic way. Where there is sound, safe, and convenient access, development has a greater opportunity to flourish. Where the pattern of land use follows Smart Growth principles, road congestion can be better managed and use of alternate means of travel such as walking, bicycling, and taking transit can be supported and optimized. Along the Study Corridor there are four predominant land use types: agricultural, auto/industrial, commercial, and residential. Figure 33 illustrates the land type characteristics. In general, the Route 5 corridor transitions from a more rural setting at its southern end to a mix of suburban-scale commercial at its northern end. Automotive uses dominate the section of the Route 5 between Phelps Road and Abbe Road.

Figure 33: Land Use Characteristics

A more granular look at land use categories is shown in Figure 34, where vacant commercial land is a standalone category to highlight the potential development opportunities. Agricultural land on the south edge of U.S. Route 5 is also refined into several categories, including residential to the west and vacant commercial to the east of the corridor. Commercial Gateway land use category to the north is intended to encourage business development while managing environmental, traffic, aesthetic, and community character impacts.

Figure 34: Detailed Land Use

3.2.2 Zoning

East Windsor has a distinct set of zoning districts laid out to meet local long-term development objectives. Zoning by primary intended land uses in the Study Area was generalized and is shown in Figure 35. The latest update to the zoning regulations was in the year 2016, when the Multi Family Development District (MFDD) was amended.

The notable features of each existing East Windsor zoning district in the study area are as follows:
M-I, Manufacturing Zone - intended to provide areas for manufacturing, warehousing, wholesale, and other forms of commercial and industrial activities. The character of the zone is intended to be commercial in nature while still maintaining the small town community character.

B-I, Business Zone I - intended to establish areas of light commercial activities including neighborhood retail, services, and professional offices. The character of the zone is intended to be small scale commercial activities that serve the surrounding areas and integrate well with the neighboring residential development.

B-2, Business Zone 2 - intended to provide areas of commercial activity including community retail, business, service, professional offices, and other automotive dependent uses. The character of this zone is intended to be small to large scale commercial developments primarily served by automobile.

Figure 35: Corridor Zoning

B-3, Business Zone 3, Route 140 Corridor - intended to provide for business development in order to increase the tax base, provide services and amenities to residents of the town and larger region, and provide jobs. The character of the zone is intended to provide a variety of uses and building types while managing environmental, traffic, and aesthetic/community character impacts. Planned developments with a village character and multiple uses on a parcel are desirable in this district.

HIFZ, Highway Interchange Floating Zone - establish a legal framework for land use alternatives that will provide the applicant with a wide variety of development opportunities; to encourage the economic development and fiscal improvement of the community by providing flexible development
opportunities and responsiveness to market trends for land having high visibility and access to the major intersections of Route 5 with I-9I at Exit 44, and with Route 140; to empower the Town with a measure of control over the type and quality of development while encouraging mixed Industrial, Commercial, and Business Uses; and to insure that such development is accomplished in an orderly manner with minimal negative impact to neighboring areas and critical natural resources.

TZ5, Transitional Zone 5 - to allow existing residential areas to transition in an orderly means to a commercial area. The development of this zone should provide minimal impacts on existing residential development within the area.

Residential $-R-2, R-3, A-I$, and $A 2$ - where these residential zoning districts are established to provide a harmony with natural features of the land and the needs of East Windsor residents, both present and future. The agricultural zones are also considered residential zones, however, the intent is to promote present and future agricultural uses.

MFDD, Multi Family Development District - intended to regulate the development and construction of multi-family housing, including but not limited to apartments, condominiums and cooperatives, whether new or existing structures, and to permit planned residential developments (PRD) for single-family housing with open space conservation in accordance with Section 801.

The parking zoning provisions in the East Windsor zoning regulations include a traditional table with the number of parking spaces required by use. In addition, a commission can waive the minimal required parking spaces based on a parking reduction application.

3.2.3 Environmental Conditions

Environmental conditions are a significant consideration for the Route 5 Corridor due to its proximity to the Connecticut River, floodplains, floodways, and wetlands. The Connecticut River itself flows southward through the State and ultimately empties into Long Island Sound. Within the Study Area, there are several small tributary rivers, brooks, and streams that join the Connecticut River:

- Scantic River - south edge of the study area
- Quarry Brook - north of Stoughton Road
- Stoughton Brook - south of Tromley Road
- Namerick Brook - north of Tromley Road
- Blue Ditch - under the Dexter D. Coffin Bridge
- Boweyns Brook - south of the Enfield town line

Figure 36 illustrates the approximate boundaries of I00-Year Flood Zone, 500-Year Flood Zone, and wetlands. The $100-Y e a r$ Flood Zone is the area that has a one percent chance of flooding in any given year. In the southern end of the Study Area, much of the land adjacent to Route 5 is within the I00Year Flood Zone.

Federal vs. Connecticut's Wetlands Definitions

Connecticut's definition of inland wetlands is based on soil characteristics.
The Federal Clean Water Act definition for wetlands is based on a three-part criteria:

1) soll characteristics
2) hydrophytic vegetation
3) hydrology.

Figure 36: Environmental Constraints

Figure 37 shows Natural Diversity Areas, slopes, and wetlands (Federal and State) within the Study Area. These constraints are present throughout the Study Area, and Route 5 itself runs through both wetlands and Natural Diversity Areas.

More specific environmental evaluations and documentation will be completed in accordance with CEPA and NEPA requirements under subsequent initiatives as study recommendations are advanced to design and implementation.

3.2.4 Physical Features /

Figure 37: Natural Diversity Areas, Slopes, and Wetlands

Constraints

Physical features identified in the study area include Rights-of-Way (ROW) and Utilities.

Based on approximate ROW lines shown in traffic control signal plans, the ROW lines along Route 5 are generally located several feet beyond the edge of road. However, there are some locations where the road is at the edge of the State ROW, for example at the Big Y driveway. Adding lanes or sidewalks along Route 5 seems to be possible within the existing ROW within much of the Study Area. Opportunities for new interconnections between local streets, commercial driveways, and Route 5 that would serve to improve access, circulation, and walkability within the study corridor would require the assemblage of ROW across numerous parcels. As such, it is anticipated that the improvements could be implemented or accommodated in conjunction with future redevelopment plans for the parcels on which these new network connections would be provided.

Overhead and underground utilities - such as electric, cable, telephone, water, and sewer lines - are located throughout the Study Area. Because relocation of utilities can be cost-prohibitive to potential improvement projects in the corridor, potential impacts to these utilities are generally minimized or avoided where possible. Additionally, existing public utility infrastructure, particularly water, storm water and sewer capacity, could constrain the intensity of future development that is possible without upgrades.

3.3 Multimodal Accommodations

Much of Route 5 in the study area has been designed to prioritize the automobile and the emphasis on a single mode of transportation has largely contributed to the issues regarding safety, congestion, and accessibility along the corridor today. This auto-oriented approach has created an environment along the corridor that generally lacks sufficient facilities for alternative modes of transportation, such as taking a bus, biking, or walking.

While these conditions make Route 5 intimidating and discouraging to bicyclists and pedestrians today, a significant amount of potential does exist. There has been a growing recognition not only across the state, but across the nation that the key to designing efficient, sustainable, and safe transportation systems is to incorporate multiple modes that are accessible and convenient for all users.

This section of the report includes and assessment of the existing conditions of bicycle, pedestrian, transit, and multi-use facilities within and adjacent to the Study Area.

3.3.I Pedestrian Facilities

Being rural in nature, the study corridor generally has no sidewalks. Other pedestrian facilities are limited to four pedestrian actuated intersection crossings and a single painted crosswalk across Route 5. The locations of these facilities are noted in Figure 38. The crosswalk is located at Tromley Road and East Windsor High School. There are a number of pedestrian push buttons along Route 5 in the northern portion of the Study Area. Many of these push buttons are not accessible to people in wheelchairs. Only the push button at Tromley Road actuates an exclusive pedestrian phase; the remainder are concurrent.

Figure 38: Pedestrian Facilities

Figure 39 shows the number of pedestrians counted at signalized intersections corridor during the AM and PM peak periods. There are signs of pedestrian presence in the corridor such as goat paths on the side of the road. Pedestrians may walk in the shoulder where there is vegetation, a slope, or other barriers along the edge of the road. In general, roadway shoulders of varying width are provided on both sides of the corridor. However, these shoulders are also used by bicyclists and vehicles, and in some locations they are absent altogether.

What is Desire Lane / Goat Path?
Desired Lane is informal route that is formed in space by people making their own paths and shortcuts; it is an unofficial and usually the shortest route. Another name for is Goat Path from the consequent erosion.

Pedestrian Walking in Shoulder Lane (44 South Main Street) Push-to-Walk Button at Newberry Rd Interchange

Figure 39: Pedestrian Counts at Intersections AM, (PM)

3.3.I.I ADA measures

The Americans with Disabilities Act (ADA) requires access to the public right-of-way be provided for people with disabilities and visual impairments. This includes providing accessible sidewalks, street crossings, and pedestrian push buttons at signals. ADA accessibility is a requirement for any project that receives federal funding. Specific ADA accessibility guidelines include:

- Minimum continuous sidewalk widths of 4 feet, with 5 feet of space provided at 200 -foot intervals for passing.
- Minimum sidewalk widths maintained without obstruction.

Goat Path \& No Shoulders

- Curb ramps to transition from sidewalk elevation to street level at crossing locations.
- Detectable warning surfaces on all curb ramps.
- Accessible pedestrian signals that provide non-visual (audible and vibrotactile) queues.
- Accessible pedestrian push buttons.

The single marked crosswalk at Tromley Road does have push buttons, but there are no other amenities typical of a pedestrian corridor, e.g., tactile warning strips, continuous sidewalk on the east side of the corridor, audible or vibrotactile pedestrian signals, and properly designed ramps with curb and gutter considerations. The crossings at these locations may be difficult to navigate for vulnerable users.

Tromley Road sidewalk condition and ADA non-compliance

3.3.I. 2 Journey to work

According to the US Census Bureau Longitudinal Employer-Household Dynamics data, there were 8,583 jobs within the Study Area in 2015 (most recent available data); 279 of these jobs were held by people living within the Study Area and 8,304 jobs were held by people outside of the Study Area. Of residents living within the Study Area, 2,575 residents commute to work outside of the Study Area. These patterns are shown in Figure 40.

Figure 40: Study Area Commuting Patterns for Employment in East Windsor

Figure 41 illustrates the general direction of employment and distance travelled. 43% of people travel less than 10 miles to work, followed by 38% traveling between $10-25$ miles, and remaining 19% traveling more than 25 miles.

Figure 4I: Study Area Direction of Commuting Patterns to/from Employment/Home

3.3.2 Bicycle Facilities

While there are currently no dedicated bike routes, signage, or facilities for bicyclists along Route 5, this mode of transportation has the potential to be well utilized in the study area. Currently, the bicycle environment is less than ideal and characterized by inconsistent shoulders, numerous intersecting roadways and driveways, constant streams of traffic that sometimes travel at high speeds, and a lack of "share the road" signage or other devices that would alert drivers of the potential to encounter a bicyclist.

Although there is a multi-use trail in proximity to the Study Area, bicycle infrastructure, such as bicycle lanes and bicycle racks, is noticeably lacking on Route 5. Despite this, based on STRAVA bicycle activity data, Figure 42, there is low to medium usage between South Water St and Phelps Road (Route 191) as well as along Scantic Road.

Cyclist (252 South Main St)

Figure 42: Strava Bike Usage
Data collection efforts confirm that there are a few minimal bicycle riders on the corridor during peak periods. Bicycle counts at signalized intersections are shown on Figure 43. Though the number of bicyclists is low, they travel through multiple intersections, showing that there is demand for medium- and long-distance bicycle travel along Route 5.

Figure 43: AM and PM Bicycle Counts

3.3.3 Multi-Use Trails

The Windsor Locks Canal State Park Trail runs through Windsor Locks and Suffield to the west of the Study Area. The trail begins at Bridge Street (Route 140) in Windsor Locks and proceeds northward along the Connecticut River until its terminus at Canal Road. This trail is approximately 4.5 miles long and its footprint follows the historic towpath of an over-170-years-old waterway. The Connecticut Department of Energy and Environmental Protection (DEEP) had been leasing the land from the Windsor Locks Canal Company for the public use as a state park trail. As of June 2018, the Windsor Locks Canal State Park Trail is temporarily closed in connection with the redevelopment of the Montgomery Mills building. The DEEP and the Windsor Locks Canal Company are finalizing various arrangements, including trail access.

3.3.4 Bus Transit Commuter Systems

3.3.4. \quad Transit Routes

Connecticut Transit (CTtransit), a CTDOT-owned bus service, provides bus service to downtown Hartford on weekdays from Enfield and South Windsor. Within the Study Area, only route 905E traverses the corridor, and it does so in the off peak direction. In the AM, the peak travel direction is to Hartford; however, the 905E traverses Route 5 is in the northbound direction towards Enfield,

Windsor Locks Canal State Park
Trail Map allowing only disembarkments. In the evening, the reverse is true, and the bus only accepts embarkments as it heads down Route 5 towards Hartford. These are the only two CTtransit buses on Route 5 on weekdays, and there is no bus service on weekends. Figure 44, page 47, outlines route 905 and designated stops. On Route 5, bus stops are marked with an official bus stop sign; Figure 45 on page 47 provides examples.

Figure 44: 905 Bus Route in Study Area

Figure 45: Examples of Bus Stops

Route 905 ridership averages approximately 3,000 trips per day on its peak direction route, but only seven to ten riders on its off-peak service down Route 5. While majority of the trips in the off-peak direction are through trips, 2-3 riders embark or disembark at Phelps Street (Route 191) and / or Stoughton Road.

South of the corridor study area, CTtransit Route 96 provides services between South Windsor, East Hartford, and Hartford. This Route's most northern point is at intersection of Route 5 and Route 194 in South Windsor, as shown in Figure 46. CTtransit Route 94 also serves South Windsor along Route 5. Combining Routes 94 and 96, the average daily ridership in 2014 totaled 1,629 boardings and alightings.

All CTtransit buses are wheelchair accessible with wheelchair lifts or ramps for access by persons with disabilities. In addition, for compliance with the ADA, the Greater Hartford Transit District provides paratransit transportation services for individuals who, because of their disability, are unable to travel on the fixed route public transit service operated by CTtransit. The paratransit service is designed to provide those persons with disabilities equal access to public transportation; however, the service is limited to within $3 / 4(.75)$ mile radius of the fixed route public transit service. The last stop on Route 96 is 0.7 miles from the East Windsor town line.

Figure 46: Bus Route 96 South of the Study Area

3.3.4.2 Bus Fares

Standard CTtransit fares for (Zone A / Zone I) are $\$ 1.75$ for adults, $\$ 1.40$ for youth, and $\$ 0.85$ for seniors and persons with disabilities. Ten rides can be purchased for $\$ 15.75$ and passes are available in the following denominations: 2 hours for $\$ 1.75$, I day for $\$ 3.50$, 3 day for $\$ 8.75$, 5 day for $\$ 14.00$, 7 day for $\$ 19.25$, and I month for $\$ 63.00$. Express routes (Zone 2) are $\$ 3.20$ for a one-way fare. Table 9 , below, illustrates the fare structure for local bus services.

Table 9: Bus Fare Structure

Local Bus Fare	Zone	Fare
Cash (Regular)	Zone A / Zone I	$\$ \mathrm{l} .75$
Cash (Youth)	Zone A / Zone I	$\$ 1.40$
Cash (Senior)	Zone A / Zone I	$\$ 0.85$
I0-Ride Ticket (Regular)	Zone A / Zone I	$\$ 15.75$
I0-Ride Ticket (Youth)	Zone A / Zone I	$\$ 12.60$
I0-Ride Ticket (Senior)	Zone A / Zone I	$\$ 7.65$
Children (Age 4 and Under, 3 Child Max.)	Zone A / Zone I	Free
Transfers within Two Hours	Zone A / Zone I	Free
All-Day Pass	Zone A / Zone I	$\$ 3.50$
2-Hour Pass	Zone A / Zone I	$\$ 1.75$
3-Day Pass	Zone A / Zone I	$\$ 8.75$
5-Day Pass	Zone A / Zone I	$\$ 14.00$
7-Day Pass	Zone A / Zone I	$\$ 19.25$
3I-Day Pass (Regular)	Zone A / Zone I	$\$ 63.00$
3I-Day Pass (Senior)	Zone A / Zone I	$\$ 30.60$

Route 905 E is an express route and incurs additional travel zone costs. The cost of a one-way fare within Zone A / Zone B / Zone C is $\$ 3.20$, a one-way fare between Zone A \& B / Zone B \& C is also \$3.20, and finally, the one-way fare between Zone $A \& C$ is $\$ 4.10$.

CTtransit tickets can be purchased at ticket vending machines, from the bus drivers, and online. A new method of payment was introduced in 2018 with Go CT Card; it provides same discounts as the multi-ride and / or monthly pass, but the card and funds on the card will never expire.

3.3.5
 Train Services

On June 16 th, 2018, a new CTrail Hartford Line service was launched between multiple towns in central Connecticut along the |-9| corridor connecting three major cities: New Haven, Hartford, and Springfield. Windsor Locks is one of the 9 operational stations, with additional four to come on line in the future. Currently, there are 16 weekday trips, including those existing Amtrak trains that honor Harford Line fares and tickets. One-way fares are shown in Table 10.

Table IO: CTrail Fare Structure

One-Way Fare	New Haven (both stations)	Wallingford	Meriden	Berlin	Hartford	Windsor	Windsor Locks
Wallingford	$\$ 3.50$						
Meriden	$\$ 4.75$	$\$ 3.00$					
Berlin	$\$ 6.00$	$\$ 3.50$	$\$ 3.00$				
Hartford	$\$ 8.00$	$\$ 5.50$	$\$ 4.50$	$\$ 3.25$			
Windsor	$\$ 9.25$	$\$ 6.75$	$\$ 5.75$	$\$ 4.50$	$\$ 3.00$		
Windsor Locks	$\$ 10.00$	$\$ 7.50$	$\$ 6.50$	$\$ 5.25$	$\$ 3.25$	$\$ 3.00$	$\$ 4.00$
Springfield, MA	$\$ 12.75$	$\$ 10.25$	$\$ 9.25$	$\$ 8.00$	$\$ 6.00$	$\$ 4.75$	$\$ 0$

During weekend launch of the service, almost 22,000 riders traveled using the CTrail line.
The Windsor Locks station is an Amtrak station and is located approximately one mile south of the historical station house and another 0.8 miles from Route 5 corridor. At the station, there are 30 free parking spaces for commuters until September 3 rd, when a nominal fee will be charged. Windsor Locks is the only station without fare vending machines and thus the fare tickets can only be purchased onboard the CTrail train. The surcharge for on-board purchases will be waived, but the Amtrak trains will sell tickets at Amtrak prices. Currently, there are no ridership projections.

3.3.6 Park \& Ride Facilities

The closest Park \& Ride Facility is across the Connecticut River in South Windsor, near the I-9I Exit 42 ramps. The access point is via South Main Street (Route I59) immediately south of the I-9I southbound ramps. The parking lot has 342 parking spaces, a bus shelter to serve Route 905 , is paved, and has on-street lighting.

4 Route 5 Future Conditions Assessment

The purpose of the future conditions assessment is to evaluate the potential for economic development within the study area and estimate potential impacts to the transportation system in the future design year (2040). The understanding of effects potential development would have on traffic growth, traffic operations and mobility in the Route 5 corridor allows local, regional and state officials to make informed decisions about land use proposals and transportation improvements within the corridor. This technical memorandum assesses the potential for future development, documents the expected traffic growth, presents the expected traffic operational results and identifies changes in transit demand. This document builds off the previously published Existing Conditions Technical Memorandum, which contains a more

```
Future Design Year: Planning
projects look at how development is
expected to progress over a 20-year
planning horizon. This ensures that
transportation recommendations
account for future growth.
```

thorough introduction for the study. It can be found at the study website (http://crcog.org/wp-
content/uploads/2019/0I/RT5-Existing-Conditions-Report_Final.pdf).

4.3 Future Development Potential

Future economic development within the study corridor was assessed under two scenarios, base and build, as defined below:

```
Base: Considers ambient growth in traffic from development in and around the study corridor that
will occur independently of actions taken as a result of this study.
```

Build: Considers additional development concepts that have been identified by the study team as part of the vision for the corridor.

4.3.I Base Scenario Development

In order to compile expected developments for the base scenario, the study team worked closely with the Connecticut Department of Transportation (CTDOT), the Route 5 Advisory Committee and local stakeholders to identify specific developments that have been approved or planned in and around the study corridor. The identified developments are documented in Table II, below, and Figure 47, following. While development proposals do not always come to fruition as originally intended, the identified developments represent the current thinking of the Town of East Windsor for the development or redevelopment of these properties, and potential developers for these sites have already been identified. It is reasonable to conclude, that if any of the proposed developments were to fall through, the Town would work with developers to pursue similar developments at these sites.

Table I I: Base Scenario Developments

Development Site	Use	Notes
Sardilli Distribution Center*	Commercial	200,000 sq. ft. distribution center
Crossroads Cathedral	Church / Hotel	Church and 90 unit hotel with conference center
MMCT Casino	Recreational / Gaming	Planned casino with over 2,000 gaming positions
Calamar Housing	Residential	I22 units of over-55 housing
Montgomery Mill	Residential	I60 apartment units
Relocated Train Station	Transportation	Windsor Locks train station serving CTrail and Amtrak service
Metro Park North	Warehouse / Industrial	800,000 sq. ft. distribution center

* Sardilli announced in September 2019 that they would not be developing this site as originally planned.

Figure 47: Base Scenario Development Sites
As noted above, Sardilli has announced that they will be creating their new distribution center in Windsor, rather than the site planned for East Windsor. Through discussions with Town of East Windsor staff, the study team believes that the Town will continue to pursue development opportunities of this scale at this site. Therefore, the base scenario and ensuing traffic forecasts continue to include the previously planned development.

4.3.2 Build Scenario Development

The study team worked with the Route 5 Advisory Committee to identify additional development or redevelopment opportunities that would impact the traffic within the study corridor. Initially, a development scheme was proposed that closely adhered to the Town's adopted Plan of Conservation and Development (PoCD). However, the advisory committee felt that the corridor should provide for more commercial development and less residential development than identified in the PoCD. This was based on the corridor's status as one of the only locations in town that provides sanitary sewer service along with access to the regional highway system (Interstate 91) and Bradley International Airport. Therefore, the study team developed new development concepts that focus on enhancing the amount of commercial development within the corridor. The potential developments are identified in Table 12 and Figure 48, both following, and described in the following sections. Conceptual site plans for the build scenario developments are included as Appendix I - Build Development Sites.

```
Plan of Conservation and Development (PoCD): A PoCD is a tool for guiding
future development of a community. By Connecticut state statute, municipalities are
required to update their PoCD every ten years. East Windsor's PoCD was updated in
2016 and is available on the Town website:https://www.eastwindsor-
ct.gov/sites/eastwindsorct/files/uploads/2016_plan_of_conservation_development.pdf
```

Table I 2: Build Scenario Developments

Development Site	Use	Notes
I-I5I Prospect Hill Road	Hotel with supporting commercial	I 15-room hotel with restaurant and retail. Total 54,250 sf
2-49 Prosepct Hill Road	Restaurant	Small-scale restaurant, likely fast or fast-casual. 4,500 sf
3 - Route 5 at Main Street and Route 5 at Thompson Road	Mixed-use commerical	Introduction of neighborhood commerial such as banks and retail with infill at Propsect Hill Plaza. 27,900 sf
4-44 South Main Street	Mixed-use commerical	Expansion of commercial development at Riverview Plaza. 9,500 sf
5-67 South Main Street	Industrial / business park	New industrial, business park or distribution center. 380,000 sf
6 - I II South Main Street \& 49 Phelps Road	Industrial / business park	New industrial, business park or distribution center. 380,000 sf
7-248 \& 250 South Main Street	Commercial	Agricultural distribution facility with retail component. 40,000 sf

Figure 48: Build Scenario Development Sites
4.3.2.I Site I - Hotel with Supporting Commercial Uses

The proposed development of this site consists of a 115 -room hotel, a general retail site and a restaurant. The site's location on Route 5 , north of the intersection with Route 140, with easy access to Interstate 91 (I-9I), provides an appropriate setting for these uses which would complement the existing nearby shopping plaza and restaurants. Furthermore, with the expected MMCT Casino, or other similar large-scale development set to take place in the near future, a hotel and restaurant could be well utilized by casino patrons.

4.3.2.2 Site 2 - Restaurant

The proposed development of this site consists of a small-scale restaurant. Site 2 is an undeveloped parcel located north of Newberry Road and the I-9I Ramps. It is adjacent to an existing Wendy's and KFC. This segment of Route 5 is heavily commercialized with other businesses such as Walmart and United Bank. As such, it is feasible that another restaurant use would be an appropriate tenant for the site. To enhance traffic safety and operations on Route 5, it is recommended that this site share access with the adjacent restaurant site at the traffic signal opposite the Walmart driveway. This recommendation is accounted for in the traffic analysis.

4.3.2.3 Site 3 - Mixed-use Commercial

The proposed development of this site consists of several general retail or commercial sites near the Route 5 intersections with Main Street and Thompson Road. Site 3 consists of parcels that are either currently vacant or for sale, in addition to the Prospect Hill Plaza which has ample parking. Mixed commercial uses could be added to this area as infill development that could serve the surrounding residential areas in addition to regional traffic. This area features high traffic volumes on Route 5 that would make the area attractive for additional commercial development. Given the operational characteristics, shared access and consolidation of access at existing signalized intersections is recommended as part of development in this area.

4.3.2.4 Site 4 - Mixed-use Commercial

The proposed development of this site consists of infill general retail and restaurants at the existing

```
Infill development refers to the
addition of development space within
a vacant or under-utilized parcel.
This can economize transportation
by requiring fewer car trips and can
enhance tax revenue for the Town. enhance tax revenue for the Town.
```

Riverview Plaza, across Route 5 from Regina Drive. Neighborhood retail uses in this location would support the surrounding residential areas to the north and east of the site.

4.3.2.5 Site 5 - Industrial Park

The proposed development of this site consists of a large industrial park on several large agricultural parcels north of Tromley Road. Driveway access to the site could be provided via a new right-in / right-out driveway on Route 5 with two-way access to Tromley Road. This use would require a zone change as the site is currently zoned for agricultural uses.

4.3.2.6 Site 6 - Industrial Park

The proposed development of this site consists of a large industrial park on several large agricultural parcels north of Phelps Road. Driveway access to the site could be provided via a new right-in / right-out driveway on Route 5 with two-way access to Phelps Road. This use would also require a zone change as the site is currently zoned for agricultural uses.
4.3.2.7 Site 7 - Agricultural Distribution

The proposed development of this site consists of a large agricultural distribution facility in the southern part of the corridor, midway between the Route 5 intersections with Abbe Road and Scantic Road. This use is similar to the proposed Sardilli distribution center (see Section 4.3.I, Base Scenario Development, page 5I) and would support the many remaining agricultural uses in the area.

4.4 Future Traffic Forecasts

Based on the developments previously discussed for the Base and Build scenarios, the study team prepared future year (2040) traffic forecasts for each. The CRCOG-maintained travel demand model was used to identify background (also known as ambient) growth. This growth is based on CTDOT's published socioeconomic projections for employment and population growth. The background growth was applied to the existing condition volumes to create a background future growth forecast which serves as the foundation for the Base and Build forecasts, which were defined on page 51 .

4.4.I Base Scenario Traffic Forecast

In order to create the Base scenario traffic forecast, the study team gathered traffic projection data from the proposed developments and added the respective traffic volumes to the background future growth forecast generated by the travel demand model. In all cases, recent traffic studies were referenced for use in assessing the trip generation for each of the development sites. These proposed volumes were reviewed

> Travel Demand Model: A travel demand model is a complex planning tool used to understand travel behavior and trips. It consists of a series of mathematical equations that represent travel choices within a transportation network. Trips are assigned to the network based on the shortest calculated travel times between trip origins and destinations. As traffic volumes increase and increasing travel times cause decreasing speeds on roadways in the network, the model reassigns trips to the network according to the shortest travel time for each trip. The number of trips on the network changes as demographic and land use factors (such as population, employment, and number of households) change over time with development in the region. by the Connecticut Department of Transportation (CTDOT) for use in the study. The 2040 Base Scenario peak hour traffic volumes are illustrated in Figure 50 (weekday AM peak hour), following, and Figure 51, page 59, (weekday PM). An intersection by intersection volume comparison between the Base and Existing volumes is included in Table 13 (AM), page 64, and Table 14 (PM), page 65, and summarized on Figure 49, below.

Figure 49: Base Scenario (2040) Intersection Traffic Volume Growth

Figure 50: Weekday AM Peak Base Scenario (2040) Traffic Volumes

Figure 51: Weekday PM Peak Base Scenario (2040) Traffic Volume

Background (ambient) growth rates are forecast between 10% and 22% throughout the corridor. The background growth rates are lower at the higher-volume intersections (such as Route 140 and the I-91 Ramps / Newberry Road).

The highest growth, both in net change and by percentage, occurs north of the I-9I Ramps / Newberry Road intersection. Increases in this part of the corridor are forecasted at 500 to 600 vehicles per hour in the weekday AM peak (a near 100 percent increase) to 700 to 800 vehicles per hour in the weekday PM peak. The primary reason for these increases is the development of the MMCT Casino.

Growth is relatively consistent south of the I-9I Ramps / Newberry Road intersection, typically between 350 and 500 vehicles per hour in the weekday AM peak and between 400 and 550 vehicles per hour in the weekday PM peak.

4.4.2 Build Scenario Traffic Forecast

In order to create the Build scenario traffic forecast, the study team projected traffic volume data from the proposed developments using industry-standard trip generation formulae. These calculations are included in Appendix 2 - Build Scenario Trip Generation.
These volumes were then added to the Base Scenario forecast. The 2040 Build Scenario peak hour traffic volumes are illustrated in Figure 53 (weekday AM peak hour), following, and Figure 54, page 63, (weekday PM). An intersection by intersection volume comparison between the Build, Base and Existing volumes is included in Table 13 (AM), page 64, and Table 14 (PM), page 65, and summarized on Figure 52, below.

Figure 52: Build Scenario (2040) Intersection Traffic Volume Growth
The largest increases in traffic volumes between the Base and Build scenario occur between the I-9I Ramps / Newberry Road intersection and Phelps Road. The volumes at these intersections increase by 400 to 500 vehicles per hour during the weekday AM peak hour and by 600 to 800 vehicles per hour in the weekday PM peak. This is primarily caused by the concentration of new commercial development proposed in this area as part of the Build scenario, especially the two large industrial parks near Tromley Road and Phelps Road. When compared with the existing volumes, traffic growth rates are forecast to be fairly consistently through the southern part of the corridor between 43% and 52%.

Figure 54: Weekday PM Peak Build Scenario (2040) Traffic Volumes

Table I3: Weekday AM Base (2040) and Build (2040) Growth Summary

Intersection / Approach	Weekday AM Peak								
	$\begin{aligned} & \text { Exiting } \\ & \text { (2017) } \end{aligned}$ Volumes	Base (2040) Volumes	Net Change (Existing to Base)	\% Change (Existing to Base)	$\begin{aligned} & \text { Build } \\ & \text { (2040) } \end{aligned}$ Volumes	Net Change (Existing to Build)	Net Change (Base to Build)	\% Change (Existing to Build)	\% Change (Base to Build)
Route 5 (Prospect Hill Road) at Route 140 (North Road / Bridge Street)									
Route 5 (Prospect Hill Road) Northbound	186	442	256	137.6\%	490	304	48	163.4\%	10.9\%
Route 5 (Prospect Hill Road) Southbound	235	347	112	47.7\%	435	200	88	85.1\%	25.4\%
Overall	1,904	2,497	593	31.1\%	2,832	928	335	48.7\%	13.4\%
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Eversource Driveway									
Route 5 (Prospect Hill Road) Northbound	221	356	135	61.1\%	413	192	57	86.9\%	16.0\%
Route 5 (Prospect Hill Road) Southbound	279	444	165	59.1\%	541	262	97	93.9\%	21.8\%
Overall	500	1,114	614	122.8\%	1,268	768	154	153.6\%	13.8\%
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Commercial Driveway									
Route 5 (Prospect Hill Road) Northbound	216	327	111	51.4\%	384	168	57	77.8\%	17.4\%
Route 5 (Prospect Hill Road) Southbound	266	584	318	119.5\%	661	395	77	148.5\%	13.2\%
Overall	489	1,100	611	124.9\%	1,209	720	109	147.2\%	9.9\%
Route 5 (Prospect Hill Road) at Big Y / Ethos Energy Driveways									
Route 5 (Prospect Hill Road) Northbound	240	376	136	56.7\%	464	224	88	93.3\%	23.4\%
Route 5 (Prospect Hill Road) Southbound	275	649	374	136.0\%	733	458	84	166.5\%	12.9\%
Overall	553	1,080	527	95.3\%	1,253	700	173	126.6\%	16.0\%
Route 5 (Prospect Hill Road) at Walmart / Commercial Driveways									
Route 5 (Prospect Hill Road) Northbound	279	428	149	53.4\%	503	224	75	80.3\%	17.5\%
Route 5 (Prospect Hill Road) Southbound	283	650	367	129.7\%	743	460	93	162.5\%	14.3\%
Overall	654	1,199	545	83.3\%	1,367	713	168	109.0\%	14.0\%
Route 5 (Prospect Hill Road) at I-91 Ramps / Newberry Road									
Route 5 (Prospect Hill Road) Northbound	785	930	145	18.5\%	1,086	301	156	38.3\%	16.8\%
Route 5 (Prospect Hill Road) Southbound	284	675	391	137.7\%	797	513	122	180.6\%	18.1\%
Overall	2,536	3,424	888	35.0\%	3,958	1,422	534	56.1\%	15.6\%
Route 5 (Prospect Hill Road / South Main Street) at Main Street (SR 510) / Prospect Hill Plaza Driveway									
Route 5 (South Main Street) Northbound	830	967	137	16.5\%	1,138	308	171	37.1\%	17.7\%
Route 5 (Prospect Hill Road) Southbound	971	1,261	290	29.9\%	1,603	632	342	65.1\%	27.1\%
Overall	1,931	2,375	444	23.0\%	2,927	996	552	51.6\%	23.2\%
Route 5 (South Main Street) at Thompson Road									
Route 5 (South Main Street) Northbound	788	910	122	15.5\%	1,077	289	167	36.7\%	18.4\%
Route 5 (South Main Street) Southbound	1,105	1,372	267	24.2\%	1,701	596	329	53.9\%	24.0\%
Overall	2,114	2,54।	427	20.2\%	3,060	946	519	44.7\%	20.4\%
Route 5 (South Main Street) at South Water Street / Pasco Drive									
Route 5 (South Main Street) Northbound	853	978	125	14.7\%	1,135	282	157	33.1\%	16.1\%
Route 5 (South Main Street) Southbound	943	1,222	279	29.6\%	1,542	599	320	63.5\%	26.2\%
Overall	1,973	2,379	406	20.6\%	2,864	891	485	45.2\%	20.4\%
Route 5 (South Main Street) at Tromley Road / East Windsor High School (EWHS) Driveway									
Route 5 (South Main Street) Northbound	685	803	118	17.2\%	1,014	329	211	48.0\%	26.3\%
Route 5 (South Main Street) Southbound	1,107	1,338	231	20.9\%	1,658	551	320	49.8\%	23.9\%
Overall	2,018	2,437	419	20.8\%	2,987	969	550	48.0\%	22.6\%
Route 5 (South Main Street) at Route 191 (Phelps Road)									
Route 5 (South Main Street) Northbound	720	878	158	21.9\%	1,151	431	273	59.9\%	31.1\%
Route 5 (South Main Street) Southbound	1,085	1,294	209	19.3\%	1,513	428	219	39.4\%	16.9\%
Overall	1,856	2,235	379	20.4\%	2,756	900	521	48.5\%	23.3\%

Table I4: Weekday PM Base (2040) and Build (2040) Growth Summary

Intersection / Approach	Weekday PM Peak								
	$\begin{aligned} & \text { Exiting } \\ & \text { (2017) } \\ & \text { Volumes } \end{aligned}$	Base (2040) Volumes	$\begin{array}{\|c} \begin{array}{c} \text { Net } \\ \text { Change } \\ \text { (Existing to } \\ \text { Base) } \end{array} \\ \hline \end{array}$	\% Change (Existing to Base)	$\begin{gathered} \text { Build } \\ (2040) \\ \text { Volumes } \end{gathered}$	$\begin{gathered} \text { Net } \\ \begin{array}{c} \text { Change } \\ \text { (Existing to to } \\ \text { Build) } \end{array} \end{gathered}$	$\begin{aligned} & \begin{array}{c} \text { Net } \\ \text { Change } \\ \text { (Base to } \\ \text { Build) } \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \text { \% Change } \\ \text { (Existing to } \\ \text { Build) } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { \% Change } \\ \text { (Base to } \\ \text { Build) } \end{array}$
Route 5 (Prospect Hill Road) Northbound	550	904	354	64.4\%	1,017	467	113	84.9\%	12.5\%
Route 5 (Prospect Hill Road) Southbound	367	512	145	39.5\%	621	254	109	69.2\%	21.3\%
Overall	2,619	3352	733	28.0\%	3,771	1,152	419	44.0\%	12.5\%
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Eversource Driveway									
Route 5 (Prospect Hill Road) Northbound	524	831	307	58.6\%	951	427	120	81.5\%	14.4\%
Route 5 (Prospect Hill Road) Southbound	374	549	175	46.8\%	638	264	89	70.6\%	16.2\%
Overall	898	1,665	767	85.4\%	1,879	981	214	109.2\%	12.9\%
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Commercial Driveway									
Route 5 (Prospect Hill Road) Northbound		743	247	49.8\%	863	367	120	74.0\%	16.2\%
Route 5 (Prospect Hill Road) Southbound	371	640	269	72.5\%	743	372	103	100.3\%	16.1\%
Overall	899	1,608	709	78.9\%	1,836	937	228	104.2\%	14.2\%
Route 5 (Prospect Hill Road) at Big Y/Ethos Energy Driveways									
Route 5 (Prospect Hill Road) Northbound	539	797	258	47.9\%	938	399	141	74.0\%	17.7\%
Route 5 (Prospect Hill Road) Southbound	344	689	345	100.3\%	798	454	109	132.0\%	15.8\%
Overall	1,009	1,637	628	62.2\%	1,908	899	271	89.1\%	16.6\%
Route 5 (Prospect Hill Road) at Walmart / Commercial Driveways									
Route 5 (Prospect Hill Road) Northbound	724	1,086	362	50.0\%	1,257	533	171	73.6\%	15.7\%
Route 5 (Prospect Hill Road) Southbound	392	725	333	84.9\%	866	474	141	120.9\%	19.4\%
Overall	1,527	2,325	798	52.3\%	2,637	1,110	312	72.7\%	13.4\%
Route 5 (Prospect Hill Road) at 1-91 Ramps/ Newberry Road									
Route 5 (Prospect Hill Road) Northbound	885	1,147	262	29.6\%	1,518	633	371	71.5\%	32.3\%
Route 5 (Prospect Hill Road) Southbound	571	864	293	51.3\%	1,009	438	145	76.7\%	16.8\%
Overall	3,374	4,320	946	28.0\%	4,993	1,619	673	48.0\%	15.6\%
Route 5 (Prospect Hill Road / South Main Street) at Main Street (SR 510) / Prospect Hill Plaza Driveway									
Route 5 (South Main Street) Northbound	977	1.197	220	22.5\%	1,609	632	412	64.7\%	34.4\%
Route 5 (Prospect Hill Road) Southbound	1,120	1,293	173	15.4\%	1,479	359	186	32.1\%	14.4\%
Overall	2,290	2,686	396	17.3\%	3,401	1,111	715	48.5\%	26.6\%
Route 5 (South Main Street) at Thompson Road									
Route 5 (South Main Street) Northbound	858	1,067	209	24.4\%	1,466	608	399	70.9\%	37.4\%
Route 5 (South Main Street) Southbound	1,166	1,377	211	18.1\%	1,593	427	216	36.6\%	15.7\%
Overall	2,283	2,730	447	19.6\%	3,412	1,129	682	49.5\%	25.0\%
Route 5 (South Main Street) at South Water Street / Pasco Drive									
Route 5 (South Main Street) Northbound	943	1,125	182	19.3\%	1,516	573	391	60.8\%	34.8\%
Route 5 (South Main Street) Southbound	1,131	1,374	243	21.5\%	1,555	424	181	37.5\%	13.2\%
Overall	2,246	2,806	560	24.9\%	3,378	1,132	572	50.4\%	20.4\%
Route 5 (South Main Street) at Tromley Road / East Windsor High School (EWHS) Driveway									
Route 5 (South Main Street) Northbound	867	1,039	172	19.8\%	1,320	453	281	52.2\%	27.0\%
Route 5 (South Main Street) Southbound	1,188	1,507	319	26.9\%	1,689	501	182	42.2\%	12.1\%
Overall	2,168	2,693	525	24.2\%	3,280	1,112	587	51.3\%	21.8\%
Route 5 (South Main Street) at Route 191 (Phelps Road)									
Route 5 (South Main Street) Northbound	902	1,067	165	18.3\%	1,248	346	181	38.4\%	17.0\%
Route 5 (South Main Street) Southbound	1,019	1,297	278	27.3\%	1,501	482	204	47.3\%	15.7\%
Overall	1,972	2,364	392	19.9\%	2,921	949	557	48.1\%	23.6\%
Route 5 (South Main Street) at Southern Auto Auction Driveways									
Route 5 (South Main Street) Northbound	869	1.014	145	16.7\%	1,209	340	195	39.1\%	19.2\%
Route 5 (South Main Street) Southbound	1,012	1,261	249	24.6\%	1,513	501	252	49.5\%	20.0\%
Overall	1,997	2,424	427	21.4\%	2,871	874	447	43.8\%	18.4\%
Route 5 (South Main Street) at Stoughton Road / Commercial Driveway									
Route 5 (South Main Street) Northbound	881	1,014	133	15.1\%	1,233	352	219	40.0\%	21.6\%
Route 5 (South Main Street) Southbound	1,027	1,261	234	22.8\%	1,537	510	276	49.7\%	21.9\%
Overall	1,987	2,424	437	22.0\%	2,876	889	452	44.7\%	18.6\%
Route 5 (South Main Street) at Abbe Road / Commercial Driveway									
Route 5 (South Main Street) Northbound	863	1,050	187	21.7\%	1,232	369	182	42.8\%	17.3\%
Route 5 (South Main Street) Southbound	1,047	1,302	255	24.4\%	1,554	507	252	48.4\%	19.4\%
Overall	1,941	2,403	462	23.8\%	2,837	896	434	46.2\%	18.1\%
Route 5 (John Fitch Boulevard) at Scantic Road / Crow Park Road									
Route 5 (John Fitch Boulevard) Northbound	975	1,242	267	27.4\%	1,415	440	173	45.1\%	13.9\%
Route 5 John Fitch Boulevard Southbound	1,061	1,281	220	20.7\%	1,542	481	261	45.3\%	20.4\%
Overall	2,144	2,694	550	25.7\%	3,120	976	426	45.5\%	15.8\%

4.5 Future Traffic Operations

The study team evaluated traffic operations in the corridor for the Base and Build scenarios by determining levels of service (LOS) and the volume-to-capacity ratio (v/c) at corridor intersections. The traffic analysis assumes that traffic signal cycle lengths and timings would be optimized for future traffic conditions, but that the existing number of lanes and signal phasing would remain. Queues were also analyzed in order to test whether they would grow to excessive lengths and block adjacent intersections.

4.5. I Base Scenario Traffic Operations

The results of the traffic operational analysis for the Base scenario are illustrated in Figure 55, Table 15 (following) and Table 16, page 69. Levels of service E or worse and queue lengths over 500 feet are highlighted with maroon text in the two tables.

> Level of Service (LOS) for an intersection is a qualitative measure of traffic operations that reflects the delay experienced by vehicles at the intersection. LOS values range from A to F. LOS A represents the best operational conditions with little delay. LOS F represents generally congested conditions with long delays and traffic queues. For the Route 5 corridor, LOS D or better represents an acceptable degree of congestion; LOS E and F represent an unacceptable degree of congestion.

> Volume-to-capacity ratio (v/c) for an intersection represents the ability of an intersection to
> accommodate the vehicular demand. A v/c ratio less than 0.85 generally indicates that adequate capacity is available and vehicles are not expected to experience significant queues and delays. As the v / c ratio approaches I.O, traffic flow may become unstable, and delay and queuing conditions may occur. Once the demand exceeds the capacity (a v/c ratio greater than I.0), traffic flow is unstable and excessive delay and queuing is expected. Under these conditions, vehicles may require more than one signal cycle to pass through the intersection (known as a cycle failure). (FHWA)

Figure 55: Base Scenario (2040) Weekday AM and PM Intersection Levels of Service
Under the Base scenario traffic operational deficiencies are expected at Route I40, the I-9I Ramps / Newberry Road, South Water Street and Tromley Road. At Route 140, the intersection is expected to operate at LOS F during the PM peak, with both Route 5 northbound and southbound experiencing heavy delays (both LOS F). During the AM peak, the intersection as a whole is expected to operate at LOS D, though the southbound Route 5 approach will experience heavier delays and operate at LOS F .

The intersection of Route 5 with the I-9I Ramps and Newberry Road is expected to operate at LOS F during the PM peak with significant delays and queuing on westbound Newberry Road and the I-9I off-ramps. Queueing on the ramps back towards the freeway presents a safety concern due to the speed differential between stopped, queued vehicles and those traveling at freeway speeds. During the AM peak, the intersection as a whole is expected to operate at LOS D, though the westbound Newberry Road approach will experience heavier delays and operate at LOS F .

Traffic is expected to flow acceptably through the southern part of the corridor (south of Tromley Road) and between the I-9। Ramps / Newberry Road and Route 140. However, several lengthy queues are expected, in particular for southbound Route 5 at Stoughton Road and Abbe Road.

Table I5: Base Scenario (2040) Weekday AM and PM Traffic Operations (I of 2)

Intersection / Approach	Weekday AM Peak				Weekday PM Peak			
	LOS	Delay (sec / veh)	95\% Queue Length (ft)	Max. VIC Ratio	LOS	Delay (sec I veh)	95\% Queue Length (ft)	Max V/C Ratio
Route 5 (Prospect Hill Road) at Route 140 (North Road / Bridge Street)								
Route 5 (Prospect Hill Road) Northbound	D	50.9	190	0.89	F	128.4	483*	1.28
Route 5 (Prospect Hill Road) Southbound	F	80.3	349*	0.97	F	240.1	482*	1.59
Route 140 (Bridge Street) Eastbound	D	35.6	240*	0.96	D	36.3	462*	0.96
Route 140 (North Road) Westbound	D	43.5	455*	0.96	C	29.4	184	0.81
Overall	D	47.6		0.97	F	88.1		1.59
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Eversource Driveway								
Route 5 (Prospect Hill Road) Northbound	A	1.9	66	0.24	A	7.1	384	0.60
Route 5 (Prospect Hill Road) Southbound	A	3.9	51**	0.37	A	5.4	108**	0.45
MMCT Casino Driveway Eastbound	C	25.4	140*	0.69	C	31.1	153*	0.76
Eversource Driveway Westbound	C	33.0	54	0.38	C	22.8	37	0.18
Overall	A	9.6		0.69	B	10.5		0.76
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Commercial Driveway								
Route 5 (Prospect Hill Road) Northbound	A	1.1	26	0.23	A	6.7	110	0.58
Route 5 (Prospect Hill Road) Southbound	B	11.9	389	0.49	B	11.8	241	0.55
MMCT Casino Driveway Eastbound	C	23.5	67	0.47	C	33.4	141*	0.69
Commercial Driveway Westbound	C	25.6	31	0.15	A	0.3	0	0.05
Overall	B	10.7		0.49	B	12.1		0.69
Route 5 (Prospect Hill Road) at Big Y / Ethos Energy Driveways								
Route 5 (Prospect Hill Road) Northbound	A	2.8	170	0.24	B	11.3	20	0.52
Route 5 (Prospect Hill Road) Southbound	A	1.8	63	0.44	A	5.6	51	0.58
Big Y Driveway Eastbound	D	42.2	20	0.2	C	33.3	117*	0.57
Ethos Energy Driveway Westbound	B	13.2	18	0.09	C	22.3	23	0.10
Overall	A	2.8		0.44	B	10.8		0.58
Route 5 (Prospect Hill Road) at Walmart / Commercial Driveways								
Route 5 (Prospect Hill Road) Northbound	A	3.1	40**	0.14	A	9.8	22*	0.39
Route 5 (Prospect Hill Road) Southbound	A	2.8	144	0.47	B	11.6	74	0.72
Commercial Driveway Eastbound	A	0.0	0	0.01	C	26.7	57*	0.56
Walmart Driveway Westbound	C	26.7	77	0.41	C	28.2	241*	0.61
Overall	A	5.2		0.47	B	14.4		0.72
Route 5 (Prospect Hill Road) at I-91 Ramps / Newberry Road								
Route 5 (Prospect Hill Road) Northbound	D	44.5	304*	0.98	D	40.9	304*	0.98
Route 5 (Prospect Hill Road) Southbound	C	28.0	110	0.69	C	30.3	200	0.84
I-9I Off-Ramps Eastbound	C	24.8	389*	0.97	F	126.2	606*	1.48
Newberry Road Westbound	F	87.0	244*	1.02	F	105.2	269*	1.10
Overall	D	38.4		1.02	F	82.1		1.48
Route 5 (Prospect Hill Road / South Main Street) at Main Street (SR 510) / Prospect Hill Plaza Driveway								
Route 5 (South Main Street) Northbound	B	11.6	94	0.55	B	12.7	94	0.71
Route 5 (Prospect Hill Road) Southbound	B	12.9	460**	0.64	B	16.8	463**	0.71
Main Street (SR 510) Eastbound	B	12.5	44	0.39	B	19.8	79	0.45
Prospect Hill Plaza Driveway Westbound	A	0.0	0	0.01	C	20.2	28	0.13
Overall	B	12.3		0.64	B	15.2		0.71

Table I 6: Base Scenario (2040) Weekday AM and PM Traffic Operations (2 of 2)

Intersection / Approach	Weekday AM Peak				Weekday PM Peak			
	LOS	Delay (sec I veh)	95\% Queue Length (ft)	Max. VIC Ratio	Los	Delay (sec I veh)	95\% Queue Length (ft)	Max V/C Ratio
Route 5 (South Main Street) at Thompson Road								
Route 5 (South Main Street) Northbound	C	20.9	292	0.56	B	19.3	335**	0.60
Route 5 (South Main Street) Southbound	B	12.2	229	0.78	A	7.1	120**	0.64
Thompson Road Westbound	C	26.3	101	0.61	D	40.0	159*	0.76
Overall	B	16.8		0.78	B	15.4		0.76
Route 5 (South Main Street) at South Water Street / Pasco Drive								
Route 5 (South Main Street) Northbound	B	12.6	713	0.7	C	23.1	617**	1.03
Route 5 (South Main Street) Southbound	D	49.2	330*	1.04	F	106.2	540*	1.18
South Water Street Eastbound	C	27.6	58*	0.61	F	137.7	210*	1.44
Pasco Drive Westbound	D	35.7	25	0.15	C	31.8	30	0.26
Overall	C	32.6		1.04	E	75.5		1.44
Route 5 (South Main Street) at Tromley Road / East Windsor High School (EWHS) Driveway								
Route 5 (South Main Street) Northbound	B	14.3	751*	0.71	D	54.7	887****	1.06
Route 5 (South Main Street) Southbound	D	54.6	1133****	1.08	C	28.7	974****	1.02
EWHS Eastbound	E	58.1	66*	0.5	D	51.9	45	0.35
Tromley Road Westbound	D	37.9	111*	0.73	B	19.4	45	0.46
Overall	D	39.7		1.08	D	38.6		1.06
Route 5 (South Main Street) at Route 191 (Phelps Road)								
Route 5 (South Main Street) Northbound	B	12.4	419	0.75	D	37.6	845*	0.98
Route 5 (South Main Street) Southbound	A	6.1	156**	0.79	A	9.6	264**	0.86
Route 191 (Phelps Road) Westbound	D	41.1	71*	0.55	D	39.7	61*	0.50
Overall	A	9.6		0.79	C	22.7		0.98
Route 5 (South Main Street) at Southern Auto Auction Driveways								
Route 5 (South Main Street) Northbound	A	2.9	146	0.42	A	3.2	151	0.40
Route 5 (South Main Street) Southbound	A	3.9	36	0.75	A	1.1	16	0.56
Southern Auto Auction Driveway Eastbound	D	50.5	68	0.46	C	33.9	39	0.34
Southern Auto Auction Driveway Westbound	D	41.5	71	0.42	D	44.8	101*	0.65
Overall	A	5.6		0.75	A	4.5		0.65
Route 5 (South Main Street) at Stoughton Road / Commercial Driveway								
Route 5 (South Main Street) Northbound	A	8.9	567	0.75	A	9.3	597	0.79
Route 5 (South Main Street) Southbound	A	2.0	16	0.70	B	15.1	1036*	0.92
Commercial Driveway Eastbound	C	33.9	17	0.06	C	34.5	25	0.11
Stoughton Road Westbound	D	48.2	90*	0.62	D	52.2	99*	0.66
Overall	A	7.5		0.75	B	14.1		0.92
Route 5 (South Main Street) at Abbe Road / Commercial Driveway								
Route 5 (South Main Street) Northbound	B	16.8	396**	0.71	B	12.2	498	0.72
Route 5 (South Main Street) Southbound	A	3.2	106	0.70	B	11.3	1010**	0.93
Commercial Driveway Eastbound	D	37.0	88*	0.64	C	20.4	26	0.18
Abbe Road Westbound	C	30.9	35	0.17	C	26.6	23	0.17
Overall	B	12.1		0.71	B	11.9		0.93
Route 5 (John Fitch Boulevard) at Scantic Road / Crow Park Road								
Route 5 (John Fitch Boulevard) Northbound	A	8.9	202	0.51	A	6.2	231	0.55
Route 5 (John Fitch Boulevard Southbound	A	6.1	104	0.55	A	4.9	116**	0.60
Crow Park Drive Eastbound	A	0.0	0	0.01	A	0.0	0	0.01
Scantic Road Westbound	D	54.6	354*	0.89	D	38.8	139	0.63
Overall	B	14.6		0.89	A	7.6		0.63

*95\% queue length exceeds capacity, queue may be longer
**95\% queue length metered by adjacent traffic signal

4.5.2 Build Scenario Traffic Operations

The results of the traffic operational analysis for the Build scenario are illustrated in Figure 56, Table 17 (following) and Table 18, page 73. Levels of service E or worse and queue lengths over 500 feet are highlighted with maroon text in the two tables.

Figure 56: Build Scenario (2040) Weekday AM and PM Intersection Levels of Service
Under the Build scenario traffic operational deficiencies are expected at Route 140, the I-9I Ramps / Newberry Road, and many of the intersections in the southern part of the corridor, particularly South Water Street and Tromley Road.

At Route 140, the intersection is expected to operate at LOS F during the PM peak, with both Route 5 northbound and southbound and Route 140 eastbound experiencing heavy delays. During the AM peak, the intersection as a whole is expected to operate at LOS E, with both Route 5 northbound and southbound and Route 140 westbound experiencing heavy delays. Traffic is expected to flow acceptably between Route 5 and the I-9I Ramps / Newberry Road.

The intersection of Route 5 with the I-9I Ramps and Newberry Road is expected to operate at LOS F during the PM peak with significant delays and queuing on northbound Route 5, westbound Newberry Road and the I-9I off-ramps. Queueing on the ramps back towards the freeway
presents a safety concern due to the speed differential between stopped, queued vehicles and those traveling at freeway speeds. During the AM peak, the intersection as a whole is expected to operate at LOS D, though the westbound Newberry Road approach will experience heavier delays and operate at LOS F.

Traffic is expected to flow acceptably at the intersections with Thompson Road and Main Street, the section that carries two travel lanes in each direction. South of Thompson Road the existing roadway transitions to one lane in each direction. Operations in this segment, with one lane in each direction, are expected to deteriorate south of Thompson Road, with both the intersections with South Water Street and Tromley Road forecast to operate at LOS F during both peak periods and Phelps Road operating at LOS E during the PM peak.

At South Water Street, delays primarily affect Route 5 Southbound which would operate at LOS F in both peak periods with queues of approximately I, 500 feet (I/4 mile). At Tromley Road, both Road 5 approaches would experience significant delays, with northbound operating at LOS E during the AM and LOS F during the PM peak and southbound operating at LOS F during both periods. Queues on both approaches during both peak periods would approach I,000 feet. At Phelps Road, the intersection would operate at LOS E during the PM peak. The northbound Route 5 approach would operate at LOS F with queues exceeding I,000 feet. Traffic would flow acceptably through the southern part of the corridor. However, lengthy queues on Route 5 southbound are forecast at Stoughton Road and Abbe Road.

Table I7: Build Scenario (2040) Weekday AM and PM Traffic Operations

Intersection / Approach	Weekday AM Peak				Weekday PM Peak			
	Los	$\begin{gathered} \text { Delay (sec I } \\ \text { veh) } \\ \hline \end{gathered}$	95\% Queue Length (ft)	Max. VIC Ratio	Los	$\begin{gathered} \text { Delay (sec I } \\ \text { veh) } \end{gathered}$	95% Queue Length (ft)	Max VIC Ratio
Route 5 (Prospect Hill Road) at Route 140 (North Road / Bridge Street)								
Route 5 (Prospect Hill Road) Northbound	E	59.5	248*	0.94	F	128.0	595*	1.24
Route 5 (Prospect Hill Road) Southbound	F	93.3	426*	1.06	F	186.8	564*	1.37
Route 140 (Bridge Street) Eastbound	D	46.5	269*	1.03	E	66.3	510*	1.11
Route 140 (North Road) Westbound	E	67.2	501*	1.05	D	42.5	210	0.95
Overall	E	64.6		1.06	F	98.4		1.37
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Eversource Driveway								
Route 5 (Prospect Hill Road) Northbound	A	6.7	146	0.29	A	7.2	464	0.69
Route 5 (Prospect Hill Road) Southbound	A	4.9	38**	0.45	A	7.6	159**	0.52
MMCT Casino Driveway Eastbound	B	19.8	112	0.56	C	26.0	136*	0.67
Eversource Driveway Westbound	C	24.9	48	0.26	C	25.9	43	0.25
Overall	A	9.4		0.56	B	10.3		0.69
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Commercial Driveway								
Route 5 (Prospect Hill Road) Northbound	A	1.0	8	0.28	A	5.7	388	0.68
Route 5 (Prospect Hill Road) Southbound	A	5.3	78	0.53	A	7.4	75	0.64
MMCT Casino Driveway Eastbound	C	23.5	67	0.47	C	33.6	118*	0.70
Commercial Driveway Westbound	A	0.0	0	0.00	A	0.5	0	0.08
Overall	A	6.4		0.53	A	9.5		0.70
Route 5 (Prospect Hill Road) at Big Y / Ethos Energy Driveways								
Route 5 (Prospect Hill Road) Northbound	A	2.7	74	0.28	A	8.1	292	0.61
Route 5 (Prospect Hill Road) Southbound	A	1.8	53	0.51	A	4.7	65	0.66
Big Y Driveway Eastbound	B	13.2	20	0.19	C	31.5	75	0.58
Ethos Energy Driveway Westbound	C	21.3	20	0.09	D	35.7	47	0.32
Overall	A	2.8		0.51	A	8.9		0.66
Route 5 (Prospect Hill Road) at Walmart / Commercial Driveways								
Route 5 (Prospect Hill Road) Northbound	A	2.0	22**	0.17	A	4.7	25**	0.46
Route 5 (Prospect Hill Road) Southbound	A	4.6	123	0.54	B	18.6	628*	0.82
Commercial Driveway Eastbound	A	0.0	0	0.01	C	26.8	55*	0.55
Walmart Driveway Westbound	C	28.2	80	0.44	C	33.5	208*	0.75
Overall	A	5.6		0.54	B	14.5		0.82
Route 5 (Prospect Hill Road) at I-91 Ramps / Newberry Road								
Route 5 (Prospect Hill Road) Northbound	D	54.9	397*	1.07	F	163.2	469*1**	1.52
Route 5 (Prospect Hill Road) Southbound	C	29.6	145	0.76	C	31.3	144**	0.88
1-91 Off-Ramps Eastbound	C	29.2	416*	1.01	F	89.2	606*	1.31
Newberry Road Westbound	F	87.0	244*	1.02	F	188.6	294*	1.31
Overall	D	42.5		1.07	F	109.5		1.52
Route 5 (Prospect Hill Road / South Main Street) at Main Street (SR 510) / Prospect Hill Plaza Driveway								
Route 5 (South Main Street) Northbound	B	15.4	128	0.75	B	17.9	132**	0.87
Route 5 (Prospect Hill Road) Southbound	C	22.1	668*/**	0.92	D	38.7	592***	0.97
Main Street (SR 510) Eastbound	B	13.1	47	0.34	B	14.9	73	0.35
Prospect Hill Plaza Driveway Westbound	A	0.5	0	0.09	C	20.6	77	0.36
Overall	B	18.7		0.92	C	26.8		0.97

*95\% queue length exceeds capacity, queue may be longer
** 95% queue length metered by adjacent traffic signal

Table I 8: Build Scenario (2040) Weekday AM and PM Traffic Operations (2 of 2)

Intersection / Approach	Weekday AM Peak				Weekday PM Peak			
	Los	Delay (sec / veh)	95\% Queue Length (ft)	Max. VIC Ratio	LOS	$\begin{array}{\|c\|} \hline \text { Delay (sec / } \\ \text { veh) } \end{array}$	95\% Queue Length (ft)	Max V/C Ratio
Route 5 (South Main Street) at Thompson Road / Proposed Commercial Driveway								
Route 5 (South Main Street) Northbound	B	15.9	316	0.76	B	18.8	213**	0.88
Route 5 (South Main Street) Southbound	B	13.4	171**	0.83	B	12.5	120**	0.86
Proposed Commercial Driveway Eastbound	B	17.9	24	0.06	C	20.2	51	0.20
Thompson Road Westbound	C	20.7	95	0.31	C	21.2	122	0.44
Overall	B	14.9		0.83	B	16.1		0.88
Route 5 (South Main Street) at South Water Street / Pasco Drive								
Route 5 (South Main Street) Northbound	A	7.3	90**	0.82	E	66.6	85**	1.12
Route 5 (South Main Street) Southbound	F	161.0	1488*	1.30	F	189.7	1502*	1.37
South Water Street Eastbound	D	39.0	103*	0.72	F	104.1	200*	1.22
Pasco Drive Westbound	D	35.3	27	0.18	C	27.9	29	0.20
Overall	F	92.1		1.30	F	126.2		1.37
Route 5 (South Main Street) at Tromley Road / East Windsor High School (EWHS) Driveway								
Route 5 (South Main Street) Northbound	E	62.0	857*/**	1.10	F	280.2	950****	1.59
Route 5 (South Main Street) Southbound	F	128.1	1103***	1.28	F	90.5	966****	1.19
EWHS Eastbound	D	48.1	56	0.39	D	54.1	46*	0.39
Tromley Road Westbound	C	31.4	105*	0.69	F	98.5	174*	1.21
Overall	F	95.7		1.28	F	167.1		1.59
Route 5 (South Main Street) at Route 191 (Phelps Road)								
Route 5 (South Main Street) Northbound	D	37.2	881*	1.01	F	121.7	1138*	1.23
Route 5 (South Main Street) Southbound	C	20.5	367**	1.02	C	28.3	429**	1.04
Route 191 (Phelps Road) Westbound	E	66.4	122*	0.78	F	204.5	257*	1.29
Overall	c	29.0		1.02	E	78.6		1.29
Route 5 (South Main Street) at Southern Auto Auction Driveways								
Route 5 (South Main Street) Northbound	A	4.4	170**	0.54	A	5.6	243**	0.54
Route 5 (South Main Street) Southbound	B	10.2	177****	0.91	A	4.3	129**	0.69
Southern Auto Auction Driveway Eastbound	D	51.6	70*	0.47	C	28.2	37	0.27
Southern Auto Auction Driveway Westbound	D	42.3	71	0.43	C	33.7	76	0.51
Overall	A	9.0		0.91	A	6.3		0.69
Route 5 (South Main Street) at Stoughton Road / Commercial Driveway								
Route 5 (South Main Street) Northbound	B	11.5	80***	0.96	B	11.2	974*	0.92
Route 5 (South Main Street) Southbound	A	2.3	1**	0.78	E	64.1	1348*	1.11
Commercial Driveway Eastbound	D	38.7	17	0.10	D	41.1	27	0.19
Stoughton Road Westbound	F	92.9	121*	0.92	F	111.5	130*	0.99
Overall	B	10.7		0.96	D	42.8		1.11
Route 5 (South Main Street) at Abbe Road / Commercial Driveway								
Route 5 (South Main Street) Northbound	C	26.6	600*	0.93	B	15.1	630*	0.84
Route 5 (South Main Street) Southbound	B	10.2	593**	0.80	E	61.8	986****	1.11
Commercial Driveway Eastbound	E	57.8	125*	0.84	C	21.5	27	0.20
Abbe Road Westbound	D	38.6	42	0.28	C	28.3	23	0.18
Overall	C	21.4		0.93	D	40.8		1.11
Route 5 (John Fitch Boulevard) at Scantic Road / Crow Park Road								
Route 5 (John Fitch Boulevard) Northbound	B	12.7	355	0.66	A	6.5	244	0.61
Route 5 John Fitch Boulevard Southbound	A	9.3	233	0.64	A	7	204**	0.71
Crow Park Drive Eastbound	A	0.0	0	0.01	A	0.0	0	0.00
Scantic Road Westbound	D	44.3	284	0.83	D	42.1	147	0.67
Overall	B	15.4		0.83	A	8.6		0.71

*95\% queue length exceeds capacity, queue may be longer
**95\% queue length metered by adjacent traffic signal

4.6 Future Transit Demand

The study team evaluated the future transit demand in East Windsor. A design year of 2025 was selected due to the desire to understand the near-term implementation potential for transit service. The analysis is based on projected socioeconomic changes forecast by the State and qualitative assessments based on the developments included in the base and build scenarios. Three different methodologies for calculating transit demand are detailed, each of these could be funded through the Federal Transportation Equity Act.

- Program demand - Applies to areas that may have a need for "limited" demand response services. This service can encompass subscription trips for clients to a social service agency or a demand response service only open to certain populations. This type of service is funded under Section 5310 of the Federal Transportation Equity Act.
- Non-program demand - applies to demand response services, flex route services open to the general public and can be funded through Section 5307 or Section 53II.
- Commuter demand - Applies to East Windsor residents and workers traveling farther

Key socioeconomic indicators used in transportation planning include:

- Land use
- Population, income and housing
- Economics and employment
- Community facilities

Demand-Response Transit: Involves small- or medium-sized vehicles operating on flexible routes with flexible schedules that depend on passenger requests. distances to/from town via transit and can be funded through Section 5307 or Section 53II.
The potential future demand in the corridor is calculated using population projection data from the State for 2025. The percentage of those without access with a vehicle and with a disability are assumed to remain constant. Employment projections from Connecticut and Massachusetts come from each state's respective labor market Information department. Appendix 4 - Future Transit Demand Calculations includes detailed calculations for the transit demand.

4.6.I Program and Non-Program Demand

The calculated future program demand and non-program demand are listed in Table 19, below.
Table 19: Program and Non-Program Transit Demand

Demand Methodology	Annual Demand (trips per year)
Program	13,317
Non-Program	$9,95 \mathrm{I}$
Total	23,268

The program demand can be seen as a proxy for paratransit/ADA/demand response service; the non-program demand would be for fixed route demand. Therefore, two nearby demand response/fixed route systems nearby will be used to determine how much service should be provided to East Windsor.

- Northeastern Connecticut Transit District provides I. 4 trips per revenue hour for demand response and 5.0 for fixed route
- Northwestern Connecticut Transit District I.I trips per revenue hour for demand response and 6.I for fixed route This would average 1.25 trips per hour for demand response service and 5.55 trips per hour for fixed route. This translates to 1,572 service hours needed annually for local fixed routes by 2025 and 12,106 service hours on local demand response service if 100 percent of transit demand was met. However, expecting to meet all possible demand in the town may be unrealistic. The transit demand met for Northeastern Connecticut Transit, for instance, is 22 percent. ${ }^{\text {U }}$ Using this percentage as a guide, $\mathbf{3 , 0 9 8}$ service hours would be needed to be provided locally between the two modes by 2025; this low amount of needed service hours means that a local fixed route would not be feasible. One small vehicle could be used to provide those service hours via demand response service, assuming a weekday service span of 6:00 AM to 6:00 PM (I2 hours) ${ }^{2}$.

Qualitatively, the opening of the new Windsor Locks rail station and planned surrounding transitoriented development (TOD) in Warehouse Point should could provide additional demand. As development patterns continue for the Route 5 corridor, the potential linkages and provisions for

Transit-oriented development includes a mix of commercial, residential, office and entertainment centered around or located near a transit station. Dense, walkable, mixed-use development near transit attracts people and adds to vibrant, connected communities. transit service should be accounted for.

4.6.2 Commuter Demand Methodology

Due to East Windsor's equidistance from Springfield and Hartford, there may be enough residents traveling north and south along US 5 for commuter transit service to be an option. There is already a route along US 5 (Route 905) that operates local service between Windsor Locks and Hartford, but no transit service operates to the east or north of town.

In order to calculate the need for commuter routes, the "On the Map" function on the US Census Website ${ }^{3}$ was used to calculate demand for commuter trips. A metric of estimated commuters riding public transit could then be established, and a flex commuter route was conceptualized, if necessary. Because East Windsor is both an employment center and residential community, both inflow and outflow commuting was used. In order to determine the threshold for establishing a new commuter route, the current demand for trips to and from Hartford is used as a threshold. This would indicate the threshold needed to establish a commuter route at 208 daily estimated trips. The calculated commuter service demand for three potential destinations is included in Table 20.

[^1]Table 20: Commuter Transit Demand

Potential Commuter	Daily Commutes to / from East Windsor	Miles to Potential Destination	Transit Mode Share	Existing		2025	
Route Destination				Annual Rides	Daily Rides	Annual Rides	Daily Rides
Hartford	2,235	17	5\%	53,000	208	56,710	222
Springfield	425	17	2\%	4,600	18	4,775	19
Windsor Locks	428	6	2\%	5,400	21	5,778	23

The analysis yields the conclusion that there will not be enough demand to establish new commuter routes to surrounding towns. The potential new developments in the corridor should be tracked, particularly the two industrial / business parks (Sites 5 and 6) and whether changes in employment patterns increase demand to levels where a new commuter route could be warranted.

5 Alternatives Analysis

This section will explain and document the alternatives developed and analyze their ability to satisfy the vision, goals and objectives.

5.I Corridor-wide Enhancements

Several recommendations, particularly those affecting pedestrian, bicyclist and transit mobility, were evaluated within the context of the entire project corridor to ensure consistency throughout the corridor. The primary corridor-wide recommendations are to:

```
- Improve signal infrastructure, specifically modernize detection systems
- Provide bicyclist and pedestrian amenities on at least one side of Route 5 and to serve key destinations
- Provide transit amenities near key destinations and seek to improve transit service
```


5.I.I Improve Signal Infrastructure

During the course of the existing conditions analysis the study conducted field work to evaluate whether the traffic signals were operating as expected via traffic modeling software. At several locations, traffic queues and delays appeared to be substantially greater than the modeling software indicated. Upon investigation, the study team identified several broken loop detectors that were fouling the operation of the coordinated signal system.

During the study, using public and private resources, the Town of East Windsor and CTDOT were able to install new video detection throughout the corridor. Field reviews and feedback from the public indicates that these change have had the desired effect of ensuring the traffic signals operate at their full capability for processing traffic efficiently.

5.I. 2 Transit Improvement Opportunities

The transit and innovative mobility improvements can be categorized into two sections. The first deals with potential improvements in transit service to East Windsor. The second deals with specific infrastructure, specifically bus stops with shelters that are recommended within the study corridor.
5.I.2.I Transit and Innovative Mobility Service Alternatives

Four preliminary alternatives have been developed as means to meet the future demand for the transit and mobility needs of the Route 5 corridor. This document includes a summary of the transit demand analysis that was included in the Future Conditions Assessment and four alternatives to add transit or innovative mobility services to the corridor. Innovative mobility services are included for consideration due to the low demand for traditional, fixed route transit.

Extensive Vehicle Queue on Route 5 Southbound at South Water Street prior to Replacement of Detection Systems

Summary of Transit Demand Analysis
The study team evaluated the future transit demand in East Windsor using published population and employment data from the State of Connecticut and the Commonwealth of Massachusetts for the selected design year of 2025. Three different types of demand were assessed: program (demand-response), non-program (local fixed route) and commuter (express). The results are documented in the following tables:

Table 21 : Program and Non-Program Transit Demand

Demand Methodology	Annual Demand (trips per year)
Program	$13,3 \mathrm{I} 7$
Non-Program	$9,95 \mathrm{I}$
Total	23,268

The demand analysis, documented in more detail in the Future Conditions Assessment available on the study website, yielded the following conclusions:

- Demand for a new fixed route local bus services is limited.
- One small vehicle could support a demand-response service.
- There is limited demand to support new commuter routes to surrounding employment centers, particularly with the parallel CTrail Hartford Line service providing connectivity to Hartford and Springfield.

Table 22: Commuter Transit Demand

Potential Commuter	Daily Commutes to I from East Windsor	Miles to Potential Destination	Transit Mode Share	Existing		2025	
Route Destination				Annual Rides	Daily Rides	Annual Rides	Daily Rides
Hartford	2,235	17	5\%	53,000	208	56,710	222
Springfield	425	17	2\%	4,600	18	4,775	19
Windsor Locks	428	6	2\%	5,400	21	5,778	23

Transit Alternative I: Increase Current (Express) Transit Service in the Corridor
Prior to August 202I, CTtransit's Route 96 ran on Route 5 between Hartford and East Windsor on a few trips during the morning and evening peaks (towards Hartford in the morning; away in the evening). If employment in the corridor increases as expected, there should be an increase in reverse-commute transit service as well.

Instead of operating only a few Route 905 trips to East Windsor, this alternative envisions that a new route be created that follows the " E " trips on Route 905. The proposed routing is shown in Figure 57, right.

Because the anticipated job growth in the corridor would be mainly in warehousing (which has many shifts that are not the standard " 9 to 5 " shift), the schedule for this route will likely not be run on a standard headway. Rather, the schedule should be tailored around common shift times. For extremely early or late trips, East Windsor should approach the companies individually or the Chamber of Commerce to subsidize these trips.
The benefit of pursuing this alternative is that this would allow a relatively quick expansion of transit services to the town. The drawback would be that East Windsor could not directly control its transit service levels or schedules. Assumptions for this alternative include:

- Service would be operated by the existing operator under the CTtransit express umbrella

There may need to be a subsidy for late night / off peak service to be provided by East Windsor or its partners. This cost assumes that 2 round trips will need to be subsidized at the forecasted cost per hour for CTtransit ($\$ 127.09$ multiplied annual inflation rate of I.20\% over 5 years equals $\$ 134.71$.

Figure 57: Transit Alternative I

Initial Capital Cost: None
Annual Operating Cost: $\$ 129,600$ Estimated Annual Ridership: 56,000

Transit Alternative 2: New Local Bus Fixed-Route from Windsor Locks Station
CTtransit is in the process of adding local bus service to the Windsor Locks Train Station, serving Amtrak and Harford Line service. A bus service from the station to Bradley International Airport, approximately 4 miles to the west, has been planned (Route 24) as well as adding two roundtrips from Hartford along Route 5.

The draft schedule for Route 24 shows several trips which have long layovers at Windsor Locks Station. The layovers are greater than 35 minutes, giving the buses sufficient time do a one directional loop in the Warehouse Point district of East Windsor and return to the station. This will allow riders from Hartford to be able to transfer from commuter trains and express buses to local bus service serving East Windsor.

Four trips are proposed-two in the morning and two in the evening peak.

Table 23: Proposed Route 24 Schedule (Courtesy CTtransit)

Direction	Start	Start Location	Initial Arrival at Endpoint	Arrival at Endpoint After Loop	End Location
North	6:20 AM	Windsor Railroad Station	6:57 AM	7:24	Windsor Locks Railroad Station
	7:50 AM		8:27 AM	8:54	
	4:11 PM		4:48 PM	17:15	
	6:25 PM		7:02 PM	19:29	

This service could serve as a supplement the East Windsor Only Demand-Response System, described in Alternative 3, to reach even more local destinations.

The benefit of pursuing this alternative is that this would allow a relatively quick expansion of transit services to the town.
Drawbacks would be that East Windsor could not directly control its transit service levels or schedules, and that only a small part of the town would be served by transit. Assumptions for this alternative include:

- Service would be operated by CTtransit
- CTtransit would "protect" these trips when making schedule adjustments in the future
- Big Y and W almart will allow buses onto their property
- The running time for a round trip between the train station and the East Windsor loop does not exceed 27 minutes
- The estimated running time between Windsor Station and Windsor Locks Station rarely exceeds 37 minutes

This is a near term solution that can be implemented as soon as August 2021; when the station is moved to its new location, there is the possibility of all Route 24 trips being able to loop into East Windsor if the Windsor Locks Park and Ride is moved north as well.

Figure 58: Potential Routing for Transit Alternative 2

Transit Alternative 3: East Windsor Only Demand-Response System This alternative would have East Windsor run their own demandresponse transit system, which would supplement the limited CTtransit service that would remain in operation on Route 5. The system would use one vehicle. The service area would be confined to the East Windsor town limits (with two exceptions). Residents without access to a vehicle, or who are unable to drive because of a disability, would be the most likely users of this alternative.

- 24-hour advance notice will be needed to reserve a trip except at the Windsor Locks train station
- The other out of service area stops would include Enfield Square and Brookside Plaza (there would not be designated times when the vehicle would arrive at these stops; reservations are required)
- Subscription trips would be available
- Door to door service (due to lack of sidewalks in the area)
- The fare should be close to the current Enfield Transit (Magic Carpet Bus) demand response fare (approximately $\$ 1$ per ride with multi-ride passes offering discounted fares)
- Weekday service from 6:00 AM to 6:00 PM
- Service not available on the following holidays: New Year's Day; Good Friday before Easter; Memorial Day; Independence Day; Labor Day; Thanksgiving; Friday after Thanksgiving; Christmas Day

Definitions / Further Explanation:

Scheduled times: The proposed times at the Windsor Locks commuter rail station where a rider could board an East Windsor transit vehicle without a reservation follow (the minutes shown is the time it would take to make a transfer to/from the train):

Table 24: Transfer Times for Transit Alternative 3

Time	SB Train Transfer Time (Minutes)	NB Train Transfer Time (Minutes)
9:00 AM	14	20
11:30 AM	7	
1:45 PM		10
5:15 PM		15

Other trips to the station could be made upon request at other times (subject to availability) and 24 -hour advance notice would be required for those trips. In order to encourage riders to go to / from the station at these times, fares on these trips will be less than the standard demand response fare.

Assumptions for this alternative include:

- Initial capital cost for one vehicle (I2 passengers, 2 wheelchairs) at the standard local match, assumed to be a Ford Starcaft Allstar shuttle bus
- Operating costs based on average cost per hour from NW and NE CT Transit Districts
- Only program ridership demand would be served

> Initial Capital Cost: $\$ 13,000$ Annual Operating Cost: $\$ \mid 26,378$ Estimated Annual Ridership: 13,000

Figure 59: Transit Alternative 3

Transit Alternative 4: Subsidized Transportation Network Company

 (TNC) ServiceThis alternative would use the private sector (TNCs) to provide transit service to East Windsor town residents. Examples of TNCs include Uber and Lyft. East Windsor would pay the difference between the actual cost of a TNC ride and a flat fare that a rider would pay.

Characteristics of the service include:

- No advance notice will be needed to reserve a trip
- Subscription trips would not be available
- Door to door service (due to lack of sidewalks in the area)
- The fare would be $\$ 5$; any costs over that would be subsidized by East Windsor
- Out of service area stops would include the Windsor Locks train station and the Enfield commercial area
- Service hours and days to be determined.
- Only registered riders from the ADA eligible population or those over 65 would be served to keep costs down ${ }^{4}$.

Definitions/Further Explanation:

ADA eligible population: Those individuals having a physical or mental impairment that substantially limits one or more of the major life activities of such individual; a record of such an impairment; or being regarded as having such an impairment. These impairments would be ${ }^{5}$:

- Any physiological disorder or condition, cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems: neurological, musculoskeletal, special sense organs, respiratory
including speech organs, cardiovascular, reproductive, digestive, genito-urinary, hemic and lymphatic, skin, and endocrine;
- Any mental or psychological disorder, such as mental retardation, organic brain syndrome, emotional or mental illness, and specific learning disabilities;
Registered riders: Only riders from the ADA eligible population or over 65 who are registered would be eligible to use the service. For over 65, a proof of age will be needed; for those with a disability, an application would need to be filled out and reviewed.

TNCs drivers would provide all the rides with their existing business model, with the rider only paying a flat fare for a ride within the town of East Windsor and certain out of town locations. A model for how a transit agency can work with a TNC to provide service is Direct Connect, operated by Pinellas Suncoast Transit (PSTA). Direct Connect replaced a low performing fixed route in a suburban part of the PSTA service area, increasing the ridership in the area previously served by the fixed route. PSTA subsidizes the cost of TNC rides up to $\$ 5.00$ (with the remainder paid by the rider) within a 15 square mile service area for all riders, regardless of ADA eligibility. Because the potential service area is almost twice as large as Direct Connect's (26 versus 15 square miles), allowing everyone to access the service would be prohibitively expensive. Therefore, this alternative would focus on those with the most mobility needs in the community.

The biggest benefit to East Windsor is that there would be no capital costs; the town's only commitment would be to provide the operating subsidy. Also, the service days and hours would be more flexible than with a transit agency run demand response servicepotentially, rides could be taken 24 hours a day, seven days a week.

[^2][^3]There are some large drawbacks, however. The cost to East Windsor would be higher than operating the transit service described in Alternatives I or 3, especially as it may be difficult to meet the equivalent service standard necessary to receive federal operating assistance. An additional issue is that, since most TNCs are considered an exclusive ride service, they are not eligible for FTA operating funds. Another barrier to partnering with TNCs is a lack of transparency from the TNCs. As private companies, TNCs consider their ride information proprietary, making it difficult for transit agencies to evaluate whether these partnerships are effective.

Assumptions for this alternative include:

- Costs shown on Figure 60 are from two sample origins in the population centers of East Windsor quoted for an Uber trip on September 24, 2020.
- The annual operation cost is calculated by the average subsidy (\$7.84) multiplied by the total program ridership (\$13,000).

Initial Capital Cost: None
Annual Operating Cost: $\$ 101,946$
Estimated Annual Ridership: 13,000

Figure 60: Transit Alternative 4

5.I.2.2 Transit Infrastructure Improvements

Transit infrastructure improvements are recommended at several locations within the study corridor. Given the local climate and long headways between buses, passenger comfort should be considered at stop locations. For this reason, bus shelters are recommended at several locations along Route 5.

The study team evaluated the surrounding land uses for potential ridership demand and identified suitable locations for stops. In
particular, sites with current and expected future employment were identified.

The majority of stop locations would include a solar-powered illuminated shelter, with sidewalk connections to adjacent building uses. Specific detail is provided on a site by site basis in Section 5.3.

5.2 Bicyclist and Pedestrian
 Accommodations

To address the lack of bicyclist and pedestrian facilities throughout the corridor, the study team recommends the implementation of a 10 foot sidepath throughout the study corridor. Based upon the traffic volumes and speeds, all but the most experienced cyclists would be uncomfortable using an on-roadway bicycle lane or the roadway shoulder.

A sidepath is a designated path (typically bi-directional), for
single use or shared use (i.e.
bicyclists and pedestrians
allowed) immediately adjacent to
and parallel with (but separated
from) the roadway.
(USDOT)

The sidepath is recommended for the west side of Route 5 for the majority of the corridor. The Town should explore the potential expansion of the trail northerly to Enfield and southerly to South Windsor. Additional sidepath connections are also possible from the Route 5 corridor to Warehouse Point.

In addition to the sidepath, sidewalk connections on the opposite side of the street are recommended to help complete the pedestrian network. These bicyclist and pedestrian recommendations are detailed further in Section 5.3.

5.3 Segmental Improvements

The study team subdivided the Route 5 corridor into five segments or areas based on the characteristics of the roadway and the deficiencies identified in the Existing and Future Conditions Assessments. These segments are highlighted in Figure 63, below.

5.3.1 Evaluation Categories

The study team identified five evaluation categories to assess the relative performance of the identified alternatives. These categories have been chosen based on the study's vision, goals and objectives, available on the Corridor Vision, Goals and Objectives Statement. The categories are as follows:

- Turn lanes
- Traffic operations
- Queueing
- Transit
- Bike / Ped

The descriptions of the alternatives, beginning with Section 5.3.2, include a description of how and why each alternative addresses the criteria. Each category includes a range of potential results for each alternative. These results range from a filled in upward green arrow as the best possible result, to a hollow upward green arrow, a yellow box indicating a neutral result, to downward facing hollow and solid red arrows. A graphic depiction of the symbols is included in Table 25 , right.

Table 25: Evaluation Category Ratings

Rating	Definition
	Satisfies the category
\square	Partially satisfies the category
	Neutral
∇	Partially does not satisfy the category
∇	Does not satisfy the category

5.3.2 Northern Segment

The northern segment extends from the study's northern limits at the Enfield town line to the signalized intersection between Route 5 and the commercial driveways serving the Big Y plaza and a commercial development east of Route 5. The northern segment is illustrated in more detail on Figure 64, below. Alternatives developed for the northern segment sought to address the following deficiencies in order to meet the study's vision, goals and objectives:

- Lack of bicyclist and pedestrian facilities along Route 5 and connecting to the Warehouse Point neighborhood
- Lack of transit facilities
- Expected deterioration of traffic operations at the intersection of Route 5 and Route 140, resulting in LOS F during the Base scenario PM peak, LOS E during the Build scenario AM peak and LOS F during the Build scenario PM peak

As discussed in Chapter 3, future traffic volumes in this area of the corridor are dependent on significant future development. In particular, the proposed MMCT casino site. While the future of that site is uncertain, there remain a strong desire from the Town to redevelop the site. Based on the uncertainty of the future traffic demand, the study includes an interactive improvement program designed to address existing deficiencies and plan for future growth.

Three alternatives have been developed for the northern section, identified as $\mathrm{N}-\mathrm{I}, \mathrm{N}-2$ and $\mathrm{N}-3$. They are described in Table 26 below. These alternatives are detailed on the following pages.

Table 26: Northern Segment Alternatives

Alternative	Purpose
N-I	Address existing bicyclist and pedestrian deficiencies by provided a sidepath along Route 5 and pedestrian connections towards Warehouse Point and residential developments on Route I40.
N-2	Address expected traffic operational deterioration at the Route I40 intersection under the Base scenario by providing additional intersection capacity. Provide new signalized intersection at proposed MMCT casino access drive.
N-3	Address expected traffic operational deterioration at the Route I40 intersection under the Base scenario by providing additional intersection capacity.

Figure 64: Northern Segment

5.3.2.I Northern Alternative I (N-I)

Alternative $\mathrm{N}-\mathrm{I}$ would address the existing deficiencies along the northern segment by installing a multi-use sidepath along Route 5 and providing key pedestrian connections to destinations along Route 140 to the east and west. $\mathrm{N}-\mathrm{I}$ is depicted in Figure 65, below.

Key Features:

- Multi-use sidepath along west side of Route 5 extending northerly from Route 140 to the Enfield Town Line
- Multi-use sidepath along east side of Route 5 extending southerly from Route 140
- Sidewalk connection from Route 140 westerly towards Warehouse Point and the existing sidewalks west of I-9।
- Sidewalk connection from Route 140 easterly along Route 140 to connect with recently constructed housing
- Pedestrian and cyclist crossings at signalized intersections and driveways

Table 27: Evaluation Criteria for Alternative N -I

Objective	Rating	Notes
Turn lanes	Δ	Turn lanes provided at all intersections
Traffic operations	\square	Does not address future scenario traffic operational deficiencies
Queuing	Δ	No queueing issues along this segment of Route 5
Transit	New bus stops and shelters for development node around Route 40	
Bike / Ped	Addresses existing bicyclist and pedestrian deficiencies	

The estimated cost to implement this alternative is $\$ 1,850,000$. See Chapter 6 for information on how this alternative is recommended as part of the study's implementation plan.

Traffic Operations (N-I)
Traffic operational analysis was conducted for Alternative N-I using the Existing, Base and Build traffic forecasts. As intersection capacity improvements are not included as part of this alternative, the resulting traffic operations would be similar to the results presented in the existing and future conditions assessments.

To accommodate expected pedestrian patterns at the Route 140 intersection an exclusive pedestrian phase is recommended and has been modeled as part of the analysis as presented below.

Traffic operations for this alternative are expected to deteriorate under the Base forecast and further under the Build forecast. Should the development scenarios identified in those forecasts advance, additional capacity at the Route 140 intersection would be required.

Table 28: Northern Alternative I (N-I) Traffic Operations

Intersection	Weekday AM Peak			Weekday PM Peak		
	LOS	Delay (sec I veh)	Max. V/C Ratio	LOS	Delay (sec / veh)	Max V/C Ratio
Existing (2017) Traffic Volumes						
Route 5 (Prospect Hill Road) at Route 140 (North Road / Bridge Street)	D	44.9	1.09	D	44.9	0.85
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Commercial Driveway	A	2.7	0.19	A	3.7	0.35
Base (2040) Traffic Forecast						
Route 5 (Prospect Hill Road) at Route 140 (North Road / Bridge Street)	F	114.0	1.70	F	96.7	1.38
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Commercial Driveway	C	23.5	1.14	B	20.0	0.86
Build (2040) Traffic Forecast						
Route 5 (Prospect Hill Road) at Route 140 (North Road / Bridge Street)	F	143.6	1.83	F	132.5	1.58
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Commercial Driveway	C	26.1	1.14	C	24.4	0.88

Route 140 Intersection (N-I)
At the Route 140 intersection, this alternative would provide bicyclist, pedestrian and transit facilities to address existing deficiencies. The proposed multi-use sidepath would transition from the east side of Route 5 south of the intersection to the west side north of the intersection. New sidewalks are recommended to connect to local destinations and proposed transit stops.

Due to the skew of the intersection, an exclusive pedestrian phase is recommended to allow for diagonal crossing. This adjustment to the signal operation is accounted for in the previously presented traffic analysis. This would allow sidepath users to cross diagonally rather than cross two legs of the intersection to continue on the sidepath.

Two transit stops are included as part of this alternative. Based on the previously discussed extension of the CTtransit Route 96, stops are proposed near the Route 140 intersection to serve the surrounding development node. Northbound buses would turn left from Route 5 to Route 140 and stop on shortly after the intersection on the north side of Route 140. There are two lanes on this location of Route 140, allowing vehicles to bypass a stopped bus. Southbound buses would turn right from

Figure 66: North Alternative I (N-I) Route I 40 Inset

Route . The 5 . 5 and stop
intersection. The existing configuration of Route 5 features a wide shoulder that would serve as a de facto bus bay.
5.3.2.2 Northern Alternative 2 (N-2)

Alternative N-2 would address the same deficiencies as Alternative $\mathrm{N}-\mathrm{I}$ and also address the traffic operational deficiencies expected to occur under the 2040 Base traffic forecast. Alternative N-2 is depicted in Figure 67, below. This alternative would be considered as part of an iterative approach to maintaining satisfactory traffic operations at the intersection of Route 5 and Route I40. It should be considered if the former Showcase Cinema / MMCT casino site is developed at a similar scale to that shown in the Base development scenario.

Key Features:

- Second northbound left-turn lane and southbound right-turn lane at Route 140 intersection
- New signalized intersection at the MMCT casino site
- Landscaped islands at two locations
- Bicyclist / pedestrian / transit amenities consistent with Alternative N - I

Table 29: Evaluation Criteria for Alternative N-2

Objective	Rating	Notes
Turn lanes	Δ	Turn lanes provided at all intersections
Traffic operations	ΔDoes not address future scenario traffic operational deficiencies	
Queuing		No queueing issues along this segment of Route 5
Transit	New bus stops and shelters for development node around Route I40	
Bike / Ped	Addresses existing bicyclist and pedestrian deficiencies	
The		

The estimated construction cost to implement this alternative is $\$ 5,200,000$. See Chapter 6 for information on how this alternative is recommended as part of the study's implementation plan.

Figure 67: Northern Alternative 2 ($\mathrm{N}-2$)

Traffic Operations (N-2)
Traffic operational analysis was conducted for Alternative N-2 using the Existing, Base and Build traffic forecasts. The additional capacity provided at the Route 140 intersection enables this alternative to satisfy the study's traffic operational goals under the Base traffic forecast. However, the higher traffic volumes of the Build forecast would still lead to delays at the Route 140 intersection. Improvements to the Route 140 intersection should be seen as iterative and dependent on specific developments moving forward.

Major traffic
generators are
developments of more that 100,000 SF of floor
space or 200 or more parking spaces. They are regulated by the Office of the State Traffic Administration (OSTA).

For this alternative, the redevelopment of the former Showcase Cinema site / MMCT casino site as a Major Traffic Generator would prompt the implementation of this alternative. While the casino project had been initially approved by OSTA, the project has now been suspended due to initiatives to implement online gambling. The study team expects that the Town of East Windsor will continue to seek redevelopment of this site as a major traffic generator.
To accommodate expected pedestrian patterns at the Route 140 intersection an exclusive pedestrian phase is recommended and has been modeled as part of the analysis as presented below.

Table 30: Northern Alternative 2 (N-2) Traffic Operations

Intersection	Weekday AM Peak			Weekday PM Peak		
	LOS	$\begin{gathered} \text { Delay (sec } \\ \text { / veh) } \end{gathered}$	Max. V/C Ratio	LOS	$\begin{gathered} \text { Delay (sec } \\ \text { / veh) } \end{gathered}$	Max V/C Ratio
Existing (2017) Traffic Volumes						
Route 5 (Prospect Hill Road) at Route 140 (North Road / Bridge Street)	D	40.0	0.90	D	47.8	0.85
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Eversource Driveway	A	0.3	0.16	A	0.4	0.32
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Commercial Driveway	A	1.5	0.17	A	3.9	0.36
Base (2040) Traffic Forecast						
Route 5 (Prospect Hill Road) at Route 140 (North Road / Bridge Street)	D	42.2	0.95	D	37.1	0.79
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Eversource Driveway	A	7.4	0.57	B	10.4	0.61
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Commercial Driveway	C	20.9	0.44	B	19.8	0.79
Build (2040) Traffic Forecast						
Route 5 (Prospect Hill Road) at Route 140 (North Road / Bridge Street)	D	39.5	0.86	D	37.1	0.79
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Eversource Driveway	A	8.4	0.50	A	9.5	0.68
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Commercial Driveway	C	22.7	0.90	C	23.2	0.88

Route 140 Intersection (N-2)
At the Route 140 intersection, this alternative would provide a new, second, left-turn lane on northbound Route 5 and a new right-turn lane on southbound Route 5 , as illustrated in Figure 68, right. It would also maintain the bicyclist, pedestrian and transit amenities featured in Alternative N-I.

Figure 68: North Alternative 2 (N-2) Route 140 Inset

5.3.2.3 Northern Alternative 3 ($\mathrm{N}-3$)

Alternative N-3 would address the same deficiencies as Alternatives $\mathrm{N}-\mathrm{I}$ and $\mathrm{N}-2$ while also addressing the traffic operational deficiencies expected to occur under the 2040 Build traffic forecast. A second northbound through lane would be provided at the Route 140 intersection to satisfy the study's goals for traffic operations. N-3 is depicted in Figure 69, below.
This alternative would be considered as part of an iterative approach
Key Features:

- Second northbound through lane at Route 140 intersection
- Traffic operational improvements and Bicyclist / pedestrian / transit amenities consistent with Alternatives N-I and N-2
to maintaining satisfactory traffic operations at the intersection of Route 5 and Route 140. It should be considered if the former Showcase Cinema / MMCT casino site and the site north of the Cracker Barrel are developed as shown in the Base and Build development scenarios.

Table 3 I: Evaluation Criteria for Alternative N-3

Objective	Rating	Notes			
Turn lanes	Δ	Turn lanes provided at all intersections			
Traffic operations	A	Meets operational goals for all traffic scenarios			
Queuing	No queueing issues along this				
segment of Route 5			$	$	New bus stops and shelters for
:---					
development node around Route					
I 40					

The estimated cost to implement this alternative is $\$ 2,300,000$. See Chapter 6 for information on how this alternative is recommended as part of the study's implementation plan.

Figure 69: Northern Alternative 3 (N-3)

Traffic Operations (N-3)
Traffic operational analysis was conducted for Alternative N-3 using the Existing, Base and Build traffic forecasts. The additional capacity provided at the Route 140 intersection enables this alternative to satisfy the study's traffic operational goals under the Base and Build traffic forecasts. Improvements to the Route 140 intersection should be seen as iterative and dependent on specific developments moving forward.

Table 32: Northern Alternative 3 (N-3) Traffic Operations

Intersection	Weekday AM Peak			Weekday PM Peak		
	LOS	$\begin{gathered} \text { Delay (sec } \\ \text { / veh) } \end{gathered}$	Max. V/C Ratio	LOS	$\begin{gathered} \text { Delay (sec } \\ \text { / veh) } \end{gathered}$	Max V/C Ratio
Existing (2017) Traffic Volumes						
Route 5 (Prospect Hill Road) at Route 140 (North Road / Bridge Street)	D	39.5	0.86	D	37.1	0.79
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Eversource Driveway	A	0.5	0.16	A	0.4	0.32
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Commercial Driveway	A	1.6	0.17	A	3.9	0.37
Base (2040) Traffic Forecast						
Route 5 (Prospect Hill Road) at Route 140 (North Road / Bridge Street)	D	39.5	0.86	D	37.1	0.79
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Eversource Driveway	A	8.8	0.51	A	9.9	0.62
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Commercial Driveway	B	17.2	0.86	B	19.1	0.79
Build (2040) Traffic Forecast						
Route 5 (Prospect Hill Road) at Route 140 (North Road / Bridge Street)	D	39.5	0.86	D	37.1	0.79
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Eversource Driveway	A	8.7	0.51	B	10.1	0.71
Route 5 (Prospect Hill Road) at MMCT Casino Driveway / Commercial Driveway	B	19.8	0.88	C	29.5	0.88

Route 140 Intersection (N-3)
At the Route 140 intersection, this alternative would provide an additional northbound through lane on Route 5. This would convert the existing northbound right-turn lane to a through-right. Route 5 north of the intersection would be widened to accommodate the second through lane, as illustrated in Figure 70, right. Shortly after the intersection the second lane would be dropped. It would also maintain the traffic operational improvements and bicyclist, pedestrian and transit amenities featured in Alternative N-I and Alternative N-2.

Figure 70: North Alternative 3 (N-3) Route I 40 Inset

5.3.3 Newberry Road Area

The Newberry Road area consists of Route 5 between Greenwoods Lane and the Big Y / commercial driveway. There are three signalized intersections along Route 5, at the Big Y driveway, Newberry Road and the I-9l Exit 44 On- and Off-ramps and at the Walmart / commercial plaza driveway. One base scenario development is included in this area, the Crossroads Cathedral. A build scenario development is also included, consisting of an expansion of the existing commercial plaza opposite from Walmart. Alternatives developed for the Newberry Road area sought to address the following deficiencies in order to meet the study's vision, goals and objectives:

- Existing traffic operational deficiencies at the intersection with Newberry Road and the I-9I on- and off-ramps, with

LOS E during both the AM and PM peak periods

- Queues from the merge between the two l-9l off-ramps that extend back towards the I-9I mainline
- Lack of bicyclist and pedestrian facilities along Route 5
- Lack of transit facilities
- Expected deterioration of traffic operations at the intersection of Route 5 and Route 140, resulting in LOS F during the Base scenario PM peak and LOS F during the Build scenario PM peak
Five alternatives were developed for the Newberry Road area, identified as New-I, New-2, New-3, New-4 and New-5. They are described in, Table 33, following. These alternatives are detailed on the following pages.

Table 33: Newberry Area Alternatives

Alternative	Purpose
New-I	Reconfigure lane configuration on the I-9I off-ramp approach to the Newberry Road signalized intersection. Address existing bicyclist, pedestrian and transit deficiencies by providing a sidepath along Route 5, with sidewalks providing key connections to developments along with transit stops.
New-2	Install a pre-signal at the point the two I-9I off-ramps merge prior to the signalized intersection with Newberry Road. Based on initial feedback this alternative is not recommended for further evaluation.
New-3	Realign I-9I southbound off-ramp to merge from the right of the northbound off-ramp. Based on initial feedback, this alternative is recommended for further analysis as part of a study of the interchange and adjacent segments of I-9I.
New-4	Extend Newberry Road to Main Street with a reconfigured interchange. Based on initial feedback, this alternative is recommended for further analysis as part of a study of the interchange and adjacent segments of I-9I.
New-5	Provide capacity improvements at the signalized intersection with Newberry Road to address deteriorating operations in the future base and build scenarios.

5.3.3.I Newberry Alternative I (New-I)

Alternative New-I would address the existing deficiencies in the Newberry Road area by reconfiguring the I-9I off-ramp approach to the Route 5 / Newberry Road intersection, providing a multi-use sidepath along Route 5, providing key pedestrian connections to destinations along Route 5 and installing two bus shelters.

Key Features:

- Provide second eastbound right turn lane at Newberry Road / |-9| ramps intersection
- Lengthen storage for northbound left turns at Newberry Road / I-9 I ramps interaction
- Multi-use sidepath along east side of Route 5
- Sidewalk on the west of Route 5 from the Big Y driveway southerly
- New bus shelters near the Walmart driveway

New bus shelters are recommended near the Walmart to enhance the transit experience for shoppers and employees.

Table 34: Evaluation Criteria for Alternative New-I

Objective	Rating	Notes
Turn lanes		Turn lanes provided at all intersections
Traffic operations		Does not address future scenario traffic operational deficiencies
Queuing	Does not address queuing for off- ramp merge point back towards the I-9I mainline	
Transit		New bus stops and shelters for development around Walmart
Bike / Ped	Addresses existing bicyclist and pedestrian deficiencies	

The estimated cost for this alternative is $\$ 2,000,000$. See Chapter 6 for information on how this alternative is recommended as part of the study's implementation plan.

Traffic Operations (New-I)
Traffic operational analysis was conducted for Alternative New-I using the Existing, Base and Build traffic forecasts. The addition of the second right turn lane would help improve traffic operations under existing conditions both in terms of delay and queueing. As the eastbound right-turn is the highest volume movement in both the AM and PM peak periods, providing the additional capacity to this movement both reduces queue lengths and overall delay.

Operations at the I-9| ramps / Newberry Road intersection are expected to deteriorate under the Build scenario volumes. In the PM peak users would experience LOS E with a volume to capacity ratio of 1.20 for the northbound left turn movement. Newberry Alternative 5 (New-5) has been developed to address the deficiencies under the Build scenario.

Intersection operations at the other two signalized intersections within this segment are expected to remain acceptable under each of the evaluated scenarios.

Table 35: Newberry Alternative I (New-I) Traffic Operations

Intersection	Weekday AM Peak			Weekday PM Peak		
	LOS	Delay (sec I veh)	Max. V/C Ratio	LOS	Delay (sec / veh)	Max V/C Ratio
Existing (2017) Traffic Volumes						
Route 5 (Prospect Hill Road) at Big Y / Ethos Energy Driveways	A	4.6	0.21	B	11.1	0.63
Route 5 (Prospect Hill Road) at Walmart / Commercial Driveways	A	7.5	0.42	B	17.5	0.71
Route 5 (Prospect Hill Road) at I-9I Ramps / Newberry Road	D	38.5	1.12	D	40.8	0.92
Base (2040) Traffic Forecast						
Route 5 (Prospect Hill Road) at Big Y / Ethos Energy Driveways	A	3.4	0.44	B	10.6	0.58
Route 5 (Prospect Hill Road) at Walmart / Commercial Driveways	A	6.4	0.49	B	15.0	0.77
Route 5 (Prospect Hill Road) at I-9I Ramps / Newberry Road	D	36.9	1.08	D	53.1	0.98
Build (2040) Traffic Forecast						
Route 5 (Prospect Hill Road) at Big Y / Ethos Energy Driveways	B	12.2	0.71	A	3.8	0.50
Route 5 (Prospect Hill Road) at Walmart / Commercial Driveways	B	19.4	0.88	A	7.9	0.52
Route 5 (Prospect Hill Road) at I-9I Ramps / Newberry Road	D	36.2	1.12	E	79.4	1.20

Newberry Road Intersection
At the Newberry Road intersection, this alternative would reconfigure the eastbound approach to provide two right-turn lanes and convert the second existing double left-turn lane to a through-left. In addition bicyclist, and pedestrian facilities would be provided to address existing deficiencies. The proposed multi-use sidepath is recommended on the east side of Route 5 to avoid conflicts with the high volume of eastbound right turning traffic from the I-9I off-ramps.

Sidewalks are recommended on the west side of Route 5 to provide connections between developments on that side of the road. Two of the dividing islands at the intersection are recommended to be extended to help provide pedestrian refuge and reduce the distance pedestrians need to cross at one time.

Figure 73: Newberry Alternative I (New-I) Newberry Road Inset

5.3.3.2 Newberry Alternative 2 (New-2)

Alternative New-2 would attempt to address the existing traffic operational deficiencies at the Newberry Road intersection by installing a presignal to control the merge between the l-9I off-ramps. Based on preliminary analysis and discussions with the advisory committee it was decided to not

A presignal is a signalized intersection that is placed in advance of an intersection.
In this instance it would control the merging of two parallel streams of traffic
from the I-9I northbound
and southbound off-ramps.

- Despite acceptable delays, it is possible that queuing distance is limited on the northbound off-ramp and queues could extend back to mainline I-9I
- Space is limited to provide advance signing of the lane configuration at the presignal, which could lead to additional merging congestion and sideswipe collisions as drivers compete for space in their desired lane
- Queues would extend further down the northbound off-ramp than they currently do under existing conditions, possible leading to increases in the number of rear end collisions, with some potentially at high speed.

Table 36: Evaluation Criteria for Newberry Alternative 2 (New-2)

Objective	Rating	Notes
Turn lanes	-	Turn lanes provided at all intersections
Traffic operations		Operations would deteriorate under future Build scenario volumes
Queuing	∇	Could exacerbate queueing issues on the I-9I northbound off-ramp
Transit	-	New bus stops and shelters for development around Walmart
Bike / Ped	Δ	Addresses existing bicyclist and pedestrian deficiencies

5.3.3.3 Newberry Alternative 3 (New-3)

Alternative New-3 would address the existing queuing issues between the northbound and southbound off-ramps by realigning the southbound off-ramp so that it merged from the right of the northbound off-ramp. A review of travel patterns illustrated that a higher number and percentage of southbound vehicles turn right at the intersection with Route 5 as opposed to northbound vehicles.

After coordination with CTDOT, it was determined that this alternative should be included in a broader assessment of the operations of I-9I along this segment. Therefore, this alternative is recommended for further evaluation outside this study.

Table 37: Evaluation Criteria for Alternative New-3

Objective	Rating	Notes
Turn lanes	Δ	Turn lanes provided at all intersections
Traffic operations		Operations would deteriorate under future Build scenario volumes without capacity improvements at the Newberry Road intersection
Queuing	Would improve but not eliminate merging operations between the northbound and southbound off- ramps	
Transit	New bus stops and shelters for development around Walmart	
Bike / Ped	Addresses existing bicyclist and	
pedestrian deficiencies		

Figure 75: Newberry Alternative 3 (New-3)

5.3.3.4 Newberry Alternative 4 (New-4)

Alternative New-4 would address the existing queuing issues between the northbound and southbound off-ramps and operational deficiencies at the Route 5 / Newberry Road signalized intersection by reconfiguring the interchange with I-9I into a more traditional interchange. Newberry Road would be extended across I-9I to Main Street and two signalized intersections would be created with the northbound and southbound ramps.

After coordination with CTDOT, it was determined that this alternative should be included in a broader assessment of the operations of I-9I along this segment. Therefore, this alternative is recommended for further evaluation outside this study.

Table 38: Evaluation Criteria for Alternative New-4

Objective	Rating	Notes
Turn lanes	Δ	Turn lanes provided at all intersections
Traffic operations	Δ	Operations would exceed metrics for all traffic scenarios
Queuing	Δ	Would eliminate merging between southbound and northbound off-ramp. Geometry would limit the storage available for the northbound off-ramp
Transit	Δ	New bus stops and shelters for development around Walmart
Bike / Ped	Δ	Addresses existing bicyclist and pedestrian deficiencies

Figure 76: Newberry Alternative 4 (New-4)

5.3.3.5 Newberry Alternative 5 (New-5)

Alternative New- 5 would address the traffic operational deficiencies expected under the future Build scenario by providing additional capacity at the Newberry Road / I-9I ramps intersection. Bicyclist, pedestrian and transit improvements would be maintained from Alternative New-5.

Key Features:

- Second eastbound through lane with receiving lane on Newberry Road
Improvements consistent with Alternative New I:
- Lengthen storage for northbound left turns at Newberry Road / I-9I ramps interaction
- Multi-use sidepath along east side of Route 5
- Sidewalk on the west of Route 5 from the Big Y driveway southerly
- New bus shelters near the Walmart driveway

Table 39: Evaluation Criteria for Alternative New-5

Objective	Rating	Notes
Turn lanes	,	Turn lanes provided at all intersections
Traffic operations	,	Operations would exceed metrics for all traffic scenarios
Queuing	-	No change to merge between off-ramps, although additional storage would help minimize queues generated by the traffic signal
Transit		New bus stops and shelters for development around Walmart
Bike / Ped	,	Addresses existing bicyclist and pedestrian deficiencies

The estimated cost for this alternatives is $\$ 1,200,000$. This assumes that improvements initially recommended under Alternative New-I have previously been constructed. See Chapter 6 for information on how this alternative is recommended as part of the study's implementation plan.

Traffic Operations (New-5)
Traffic operational analysis was conducted for Alternative New-5 using the Existing, Base and Build traffic forecasts. The addition of the second eastbound through lane alleviate delay sufficiently to allow intersection to meet the criteria for traffic operations, LOS D or better.

Intersection operations at the other two signalized intersection within the segment are expected to remain acceptable under each of the evaluated scenarios.

Table 40: Newberry Alternative 5 (New-5) Traffic Operations

Intersection	Weekday AM Peak			Weekday PM Peak		
	LOS	$\begin{gathered} \text { Delay (sec / } \\ \text { veh) } \end{gathered}$	Max. V/C Ratio	LOS	$\begin{gathered} \text { Delay (sec / } \\ \text { veh) } \end{gathered}$	Max V/C Ratio
Existing (2017) Traffic Volumes						
Route 5 (Prospect Hill Road) at Big Y / Ethos Energy Driveways	A	4.8	0.23	B	11.0	0.62
Route 5 (Prospect Hill Road) at Walmart / Commercial Driveways	A	7.3	0.38	B	16.8	0.71
Route 5 (Prospect Hill Road) at I-9I Ramps / Newberry Road	C	28.1	0.79	C	29.1	0.79
Base (2040) Traffic Forecast						
Route 5 (Prospect Hill Road) at Big Y / Ethos Energy Driveways	A	3.8	0.46	A	8.2	0.56
Route 5 (Prospect Hill Road) at Walmart / Commercial Driveways	A	5.4	0.47	B	16.9	0.78
Route 5 (Prospect Hill Road) at I-9I Ramps / Newberry Road	C	29.4	0.85	D	39.3	0.88
Build (2040) Traffic Forecast						
Route 5 (Prospect Hill Road) at Big Y / Ethos Energy Driveways	A	4.1	0.52	B	11.8	0.71
Route 5 (Prospect Hill Road) at Walmart / Commercial Driveways	A	5.4	0.54	B	19.7	0.88
Route 5 (Prospect Hill Road) at I-9I Ramps / Newberry Road	C	34.1	0.88	D	47.1	0.94

Newberry Road Intersection (New-5)
At the Newberry Road intersection, this alternative would add capacity to the eastbound and westbound approaches. On the west approach, the new capacity would be used as a second eastbound through lane, while also providing a second eastbound left-turn lane.

The east approach would be widened to include a second eastbound receiving lane, and an additional westbound lane, providing a second through lane. A refuge island would be provided to reduce the pedestrian crossing distance. Bicyclist, pedestrian and transit recommendations would be consistent with Alternative New-I.

Figure 78: Newberry Alternative 5 (New-5) Newberry Road Insert

5.3.4 Main / Thompson Segment

The Main / Thompson segment extends from the southern limits of the Newberry area southerly through the intersection with Thompson Road. It includes two signalized intersections, at Main Street and Thompson Road. The Main segment is illustrated on Figure 79, below. Alternatives developed for the Main segment sought to address the following deficiencies in order to meet the study's vision, goals and objectives:

- Lack of bicyclist and pedestrian facilities along Route 5 and connecting north along Main Street towards the Warehouse Point neighborhood
- Intersection skew angle at Main Street, reduced distance between the Thompson Road and Main Street signalized
intersection contributes to decreased operational performance.
The segment includes Build Site 3, which incorporates infill development at three separate sites around the segment.

Two alternates were developed for the Main / Thompson segment, identified as Main-I and Main-2. They are described in Table 4I. These alternatives are detailed on the following pages.

Table 41: Main / Thompson Segment Alternatives

Alternative	Purpose
Main-I	Address bicyclist and pedestrian deficiencies
Main-2	Realign Main Street to reduce intersection skew, improving traffic operations and safety, incorporate bicyclist and pedestrian improvements recommended in Alterernative Main-।

Figure 79: Main / Thompson Segment

5.3.4.I Main I Thompson Alternative I (Main-I)

Alternative Main-I would address the existing bicyclist and pedestrian deficiencies in the Main / Thompson segment by providing new sidewalks and sidepaths along with crossing infrastructure at signalized intersections.

Key Features:

- Provide continuous sidepath, transitioning from east to west side of Route 5 at Main Street
- Sidewalk connection on west side of Route 5 from Main Street extending to the north
- Sidewalk connecting commercial plaza opposite Main Street with Thompson Road
- Reduce width of southbound connection between Route 5 and Main Street
- Provide for potential sidepath connection north to Warehouse Point along Main Street

Table 42: Evaluation Criteria for Alternative Main-I

Objective	Rating	Notes			
Turn lanes	Δ	Turn lanes provided at all intersections			
Traffic operations	\triangle	Operations would exceed metrics for all traffic scenarios, would not address intersection skew			
Queuing	\square	No improvement to distance between Main Street and Thompson Road intersection			
Transit	\square	No bus shelters recommended for this segment	$	$	Bike / Ped
:---					

The estimated cost for this alternative is $\$ 750,000$. See Chapter 6 for information on how this alternative is recommended as part of the study's implementation plan.

Traffic Operations (Main-I)
Traffic operational analysis was conducted for Alternative Main-I using the Existing, Base and Build traffic forecasts. The intersections within this segment are expected to operate acceptably under all

Table 43: Main Alternative I (Main-I) Traffic Operations

Intersection	Weekday AM Peak			Weekday PM Peak		
	LOS	$\begin{gathered} \text { Delay (sec / } \\ \text { veh) } \end{gathered}$	Max. V/C Ratio	LOS	$\begin{gathered} \text { Delay (sec / } \\ \text { veh) } \end{gathered}$	Max V/C Ratio
Existing (2017) Traffic Volumes						
Route 5 (Prospect Hill Road) at Main Street (SR 7I0) / Commerical Driveway	B	12.8	0.72	B	12.8	0.74
Route 5 (South Main Street) at Thompson Road	B	10.2	0.72	B	10.2	0.72
Base (2040) Traffic Forecast						
Route 5 (Prospect Hill Road) at Main Street (SR 710) / Commerical Driveway	B	13.5	0.80	C	21.5	0.84
Route 5 (South Main Street) at Thompson Road	B	16.3	0.80	B	18.1	0.84
Build (2040) Traffic Forecast						
Route 5 (Prospect Hill Road) at Main Street (SR 710) / Commerical Driveway	C	27.7	0.94	C	23.0	0.88
Route 5 (South Main Street) at Thompson Road	C	20.6	0.94	B	19.1	0.88

traffic scenarios. Some degradation in LOS and delay is expected to occur, particularly under the Build forecast, but the results indicate the intersections will operate well within the established criteria of
LOS D or better.
5.3.4.2 Main Alternative 2 (Main-2)

Alternative Main-2 would address the existing bicyclist and pedestrian and intersection skew deficiencies by realigning Main Street to intersection Route 5 at a perpendicular angle.

```
Key Features:
- Realign Main Street to create perpendicular intersection with increased spacing between Main Street and Thompson Road
- Similar bicyclist and pedestrian amenities as Alternative Main-
2
- Combined driveway serving commercial plaza and condo complex
- Convert existing commercial driveway to right-in / right-out
```

Table 44: Evaluation Criteria for Alternative Main-2

Objective	Rating	Notes
Turn lanes	Δ	Turn lanes provided at all intersections
Traffic operations	A	Operations would exceed metrics for all traffic scenarios and increased storage distance between Main Street and Thompson Road
Queuing	A	Storage distance increased between Main Street and Thompson Road
Transit	\square	No bus shelters recommended for this segment
Bike / Ped	Addresses existing bicyclist and pedestrian deficiencies	

Figure 81: Main Alternative 2 (Main-2)

The estimated cost for this alternative is $\$ 2,725,000$. See Chapter 6 for information on how this alternative is recommended as part of the study's implementation plan.
Traffic Operations
Traffic operational analysis was conducted for Alternative Main-2 using the Existing, Base and Build traffic forecasts. The intersections within this segment are expected to operate acceptably under all traffic scenarios. Some degradation in LOS and delay is expected to occur, particularly under the Build forecast, but the results indicate the intersections will operate well within the established criteria of LOS D or better.

Table 45: Main Alternative 2 (Main-2)

Intersection	Weekday AM Peak			Weekday PM Peak		
	LOS	Delay (sec / veh)	Max. V/C Ratio	LOS	Delay (sec / veh)	Max V/C Ratio
Existing (2017) Traffic Volumes						
Route 5 (Prospect Hill Road) at Main Street (SR 710) / Commerical Driveway	B	15.2	0.63	B	17.1	0.74
Route 5 (South Main Street) at Thompson Road	B	18.1	0.63	B	11.8	0.74
Base (2040) Traffic Forecast						
Route 5 (Prospect Hill Road) at Main Street (SR 710) / Commerical Driveway	B	15.8	0.73	B	19.0	0.84
Route 5 (South Main Street) at Thompson Road	B	15.9	0.73	B	19.0	0.84
Build (2040) Traffic Forecast						
Route 5 (Prospect Hill Road) at Main Street (SR 710) / Commerical Driveway	B	19.2	0.84	C	23.5	0.88
Route 5 (South Main Street) at Thompson Road	B	18.3	0.84	B	19.5	0.88

5.3.5 Central Segment

The central segment extends from the Thompson Road intersection southerly to south of Tromley Road. The central segment is illustrated in more detail on Figure 82, below. Alternatives developed for the central segment sought to address the following deficiencies in order to meet the study's vision, goals and objectives:

- Poor existing traffic operations at South Water Street, LOS F in both the AM and PM peak periods
- Expected deterioration of traffic operations at Tromley Road under the Build scenario, resulting in LOS F in both the AM and PM peak periods
- Lack of bicyclist, pedestrian and transit amenities

As discussed in future conditions assessment, the future Build scenario traffic volumes in this area of the corridor are dependent on significant future development. The study recommends an interactive improvement program designed to address existing deficiencies and plan for future growth.

Table 46: Central Segment Alternatives

Alternative	Purpose
C-I	Address existing traffic operational deficiencies at South Water Street and lack of bicyclist, pedestrian and transit amenities
C-2	Address deteriorated traffic operations under the future Build scenario

5.3.5.I Central Alternative I (C-I)

Alternative C-I would address the existing deficiencies and expected deficiencies under the future Base scenario in the central segment by providing additional southbound capacity on Route 5 and providing new sidewalks, sidepaths and transit amenities.

Key Features:

- Extend second southbound through lane beyond South Water Street
- Provide sidepath along west side of Route 5
- Provide sidewalks along the east side of Route 5
- Allow for potential future sidepath connection north to Warehouse Point along South Water Street
- Add transit stop amenities near South Water Street and Tromley Road

Table 47: Evaluation Criteria for Alternative C-I

Objective	Rating	Notes
Turn lanes		Turn lanes provided at all intersections
Traffic operations		Satisfactory operations under Existing volumes and Base scenario, operations would deteriorate under Build scenario
Queuing	Queueing distances become lengthy during the Base scenario and deteriorate further under the Build scenario	
Transit	Two new sets of bus shelters provided	
Bike / Ped	Addresses existing bicyclist and pedestrian deficiencies	

The estimated construction cost to implement this alternative is $\$ 4.8$ million. See Chapter 6 for information on how this alternative is recommended as part of the study's implementation plan.

Traffic Operations (C-I)

Traffic operational analysis was conducted for Alternative C-I using the Existing, Base and Build traffic forecasts. The intersections within the segment are expected to acceptably under the existing traffic volumes and the Base scenario, though some delays and queueing will occur at Tromley Road, particularly during the AM peak period.

The implementation of the potential developments outlined in the Build scenario, particularly at Build Site 5 , would likely cause traffic operations to deteriorate under this alternative, particularly at Tromley Road. The increases in northbound and southbound through traffic at both South Water Street and Tromley Road indicate a need to provide additional capacity to provide acceptable operations under the Build scenario. For this purpose, Alternative C-2 has been developed.

Table 48: Central Alternative I (C-I) Traffic Operations

Intersection	Weekday A M Peak			Weekday PM Peak		
	LOS	Delay (sec / veh)	Max. V/C Ratio	LOS	Delay (sec / veh)	Max V/C Ratio
Existing (2017) Traffic Volumes						
Route 5 (South Main Street) at South Water Street / Pasco Commons Driveway	A	8.6	0.70	A	8.6	0.70
Route 5 (South Main Street) at Tromley Road	B	15.2	0.79	B	15.2	0.79
Base (2040) Traffic Forecast						
Route 5 (South Main Street) at South Water Street / Pasco Commons Driveway	A	7.1	0.67	B	14.0	0.86
Route 5 (South Main Street) at Tromley Road	C	30.6	1.01	D	45.4	1.06
Build (2040) Traffic Forecast						
Route 5 (South Main Street) at South Water Street / Pasco Commons Driveway	A	7.9	0.80	E	66.6	1.24
Route 5 (South Main Street) at Tromley Road	E	58.8	1.14	F	181.6	1.62

South Water Street Intersection (C-I)
At the South Water Street intersection, this alternative would provide additional capacity to address existing operational deficiencies. Pedestrian, bicyclist and transit amenities would also be provided. The additional capacity would be in the form of the second southbound through lane and an eastbound right-turn lane. The second southbound through lane would be dropped south of the intersection. The extension distance and taper distance would be compliant with CTDOT's Highway Design Manual.

The proposed multi-use sidepath would follow the west side of Route 5 , with sidewalks provided on the east side to facilitate pedestrian connectivity with Pasco Commons and with residential developments to the south.

Bus shelters are recommended on both sides of Route 5, north of the intersection with South Water Street. For northbound buses, the existing wide shoulder, approximately eight feet wide, would serve as a de facto bus pullout. For southbound buses, a near-side stop is recommended, due to the private road intersection and

Figure 84: Central Alternative I (C-I) South Water Street Inset
 lane merging activity south of the intersection. A widened shoulder is proposed to reduce the effect of the near-side stop on vehicular operations. These stops would provide access to Pasco Commons, adjacent residential development and the proposed Silverman Group development site.

Tromley Road Intersection (C-I)
At the Tromley Road intersection, this alternative would provide additional capacity on the Tromley Road approach to address existing operational deficiencies. The additional capacity would be in the form of a westbound right-turn lane. The existing Route 5 approaches would be widened slightly to provide eight foot wide shoulders, providing the ability for right turning vehicles to bypass through traffic.

The proposed multi-use sidepath would follow the west side of Route 5. It is recommended that the Town consider making parking in the East Windsor High School parking lot available for sidepath users. A sidewalk is recommended on the east side of Route 5 north of the intersection. This sidewalk would provide pedestrian access from the High School to the numerous residential properties along Route 5 and within the residential complex on Regina Drive.

Bus shelters are recommended on both sides of Route 5, as far-side bus stops. In these areas a widened 8 foot shoulder would be provided, see previous discussion regarding right turning traffic, which would reduce the

Figure 85: Central Alternative I (C-I) Tromley Road Inset
 effect of the stops on through vehicle operations. These stops would provide access to the High School (an employment center), other employers, and residents to the north along Regina Drive. They would also serve new development on Build Site 5, located just to the north of the intersection.
5.3.5.2 Central Alternative 2 (C-2)

Alternative C-2 would address the traffic operational deficiencies expected to occur under the Build scenario by providing additional through capacity on Route 5. The sidewalks, sidepaths and transit amenities would remain consistent with Alternative C-I but would need to be reconstructed to facilitate the roadway widening.

Key Features:

- Widen Route 5 to provide two through lanes in each direction between Thompson Road and Tromley Road
- Provide two-way left turn lane in areas with concentration of commercial and consolidated residential access
- Provide landscaped median in other areas as traffic calming and safety measure
- Relocate or maintain similar bicyclist, pedestrian and transit improvements as Alternative C-I

Table 49: Evaluation Criteria for Alternative C-2

Objective	Rating	Notes
Turn lanes		Turn lanes provided at all intersections
Traffic operations		Satisfactory operations under all traffic forecast scenarios
Queuing	Provision of two through lanes would reduce queue lengths	
Transit	Two new sets of bus shelters provided	
Bike / Ped	Addresses existing bicyclist and pedestrian deficiencies	

The estimated construction cost to implement this alternative is $\$ 9.5$ million. See Chapter 6 for information on how this alternative is recommended as part of the study's implementation plan.

Traffic Operations (C-2)

Traffic operational analysis was conducted for Alternative C-2 using the Existing, Base and Build traffic forecasts. The intersections within the segment are expected to operate acceptably under all scenarios. Under the Build scenario, the development of Build Site 5, north of Tromley Road, is expected to primarily utilize Tromley Road for access from the north and to the south. This would avoid the need for the introduction on left-turning traffic onto Route 5.

As a result, traffic volumes would increase substantially on Tromley Road, particularly the number of vehicles making a westbound left turn during the PM peak hour. The analysis indicates that this would result in an overall intersection LOS C. As development plans for Build Site 5 are advanced, care should be taken to ensure the Tromley Road approach to Route 5 operates acceptably.

Table 50: Central Alternative 2 (C-2) Traffic Operations

Intersection	Weekday AM Peak			Weekday PM Peak		
	LOS	$\begin{gathered} \text { Delay (sec / } \\ \text { veh) } \end{gathered}$	Max. V/C Ratio	LOS	Delay (sec / veh)	Max V/C Ratio
Existing (2017) Traffic Volumes						
Route 5 (South Main Street) at South Water Street / Pasco Commons Driveway	A	5.7	0.61	A	6.0	0.57
Route 5 (South Main Street) at Tromley Road	A	7.2	0.52	A	6.5	0.46
Base (2040) Traffic Forecast						
Route 5 (South Main Street) at South Water Street / Pasco Commons Driveway	A	7.2	0.58	B	16.5	0.79
Route 5 (South Main Street) at Tromley Road	B	11.4	0.72	A	9.5	0.58
Build (2040) Traffic Forecast						
Route 5 (South Main Street) at South Water Street / Pasco Commons Driveway	A	9.5	0.73	B	19.4	0.91
Route 5 (South Main Street) at Tromley Road	B	12.3	0.83	C	21.4	1.14

South Water Street Intersection (C-2)
At the South Water Street intersection, this alternative would provide additional capacity to address expected operational deficiencies under the Build scenario. Pedestrian, bicyclist and transit amenities would be provided, generally consistent with Alternative C-I. The additional capacity would be in the form of additional through lanes for both northbound and southbound Route 5. An eastbound right turn lane is also recommended on South Water Street. Along Route 5 in either direction, a two-way left turn lane would be provided due to the concentration of driveways near this intersection.

The one change from the bicyclist, pedestrian and transit recommendations between Alternative $\mathrm{C}-\mathrm{I}$ and $\mathrm{C}-2$ is in the placement of the southbound bus stop. Alternative $\mathrm{C}-2$ would relocate the stop to the far side of the signalized intersection at South Water Street. For both stops near the intersection at South Water Street, eight foot shoulders would be provided on Route 5. In addition to improving the ability for right-turning vehicles to bypass queued vehicles, the wide shoulder would reduce the effect of the bus stops on vehicular operations.

Figure 87: Central Alternative 2 (C-2) South Water Street Inset

Tromley Road Intersection (C-2)
At the Tromley Road intersection, this alternative would provide additional capacity on Route 5 to address expected deficiencies under the Build scenario. The additional capacity would be in the form of two through lanes in each direction on Route 5. Immediately to the south of the intersection, Route 5 would transition to match its existing cross section, containing one through lane in each direction. Widened, eight foot, shoulders would be provided on both sides of Route 5.

Bicyclist, pedestrian and transit accommodations would be consistent with those provided under Alternative C-2.

5.3.6 Southern Segment

The southern segment extends from north of the Phelps Road (Route 191) intersection southerly to Scantic Road. Scantic Road is the southern boundary of the study area. The southern segment is illustrated in more detail on Figure 89, below. Alternatives developed for the southern segment sought to address the following deficiencies in order to meet the study's vision, goals and objectives:

- Lack of turn lanes at signalized intersection
- Lack of bicyclist and pedestrian amenities
- Increasing delays and queuing under future volumes
- Access management deficiencies in the form of overly-wide driveways and numerous curb cuts
- Elevated crash rates on segments between Stoughton Road and Phelps Road

As discussed in the future conditions assessment, the future Build scenario traffic volumes in this area of the corridor are dependent on significant future development. The study recommends an interactive improvement program designed to address existing deficiencies and plan for future growth.

Table 5I: Southern Segment Alternatives

Alternative	Purpose
S-I	Provide turn lanes at signalized intersections, and address other existing deficiencies
S-2	Address deteriorated traffic operations under the future Build scenario, north of Southern Auto Auction
S-3	Address deteriorated traffic operations under the future Build scenario south of Southern Auto Auction

Figure 89: Southern Segment

5.3.6. 1 Southern Alternative I (S-I)

Alternative S-I would address the existing deficiencies in the southern segment but adding turn lanes at signalized intersections, reconfiguring Route 5's lane arrangement in the vicinity of Southern Auto Auction and provide a sidepath.

Key Features:

- Provide turn lanes at all signalized intersections
- Reconfigure Route 5 between Stoughton Road and Tromley Road using a road diet
- Provide a sidepath along the west side of Route 5

A road diet is a reduction in the number of travel lanes, typically including the conversion of an existing four-lane undivided roadway segment to a three-lane segment consisting of two through lanes and a center, two-way left turn lane. (FHWA)

Table 52: Evaluation Criteria for Alternative S-I

Objective	Rating	Notes
Turn lanes		Turn lanes provided at all intersections
Traffic operations		Satisfactory operations under Existing and Base scenarios. Delays would increase under the Build scenario.
Queuing		Satisfactory queuing under Existing scenario. Queues would lengthen significantly under the Base and Build scenarios.
Transit	Based on the current and proposed land uses, opportunities for bus stops with shelters are limited	
Bike / Ped	Addresses existing bicyclist and pedestrian deficiencies	

The estimated construction cost to implement this alternative is $\$ 7.4$ million. It is anticipated that the road diet conversion could be accomplished via the state's Vendor-in-Place pavement program. See Chapter 6 for information on how this alternative is recommended as part of the study's implementation plan.

Figure 90: Southern Alternative I (S-I) (I of 2)

Figure 91: Southern Alternative I (S-I) (2 of 2)

The purpose of the road diet between Phelps Road and Stoughton Road is to address the elevated crash rates in the areas where the existing Route 5 merges from two lanes to one (southbound approaching Stoughton Road and northbound approaching Phelps Road). These two merge lengths do not meet modern design standards, there is not sufficient distance to provide merge lengths between the signalized intersections that meets the standard.

Traffic Operations (S-I)

Traffic operational analysis was conducted for Alternative S-I using the Existing, Base and Build traffic forecasts. The intersections in the segment are expected to operate acceptably under the existing traffic volumes and the Base scenario. The results are presented in Table 53, following.

The implementation of the potential developments under the Build scenario would cause a deterioration of traffic operations in the form of LOS E at the Southern Auto Auction driveway intersection. Other intersections within the corridor would experience volume to capacity ratios in excess of I.O. This means that volume would exceed capacity and that queues would continue to extend throughout the peak period. Based on this expected deterioration of operations, Alternatives S-2 and S-3 have been developed

Table 53: Southern Alternative I (S-I) Traffic Operations

Intersection	Weekday AM Peak			Weekday PM Peak		
	LOS	$\begin{gathered} \text { Delay (sec / } \\ \text { veh) } \end{gathered}$	Max. V/C Ratio	LOS	$\begin{gathered} \text { Delay (sec / } \\ \text { veh) } \end{gathered}$	Max V/C Ratio
Existing (2017) Traffic Volumes						
Route 5 (South Main Street) at Phelps Road (Route 191)	A	3.7	0.65	A	7.4	0.67
Route 5 (South Main Street) at Southern Auto Auction (SAA) Driveways)	A	8.7	0.67	A	9.8	0.77
Route 5 (South Main Street) at Stoughton Road	A	7.9	0.61	A	6.9	0.74
Route 5 (South Main Street) at Abbe Road	A	8.3	0.57	A	5.2	0.71
Route 5 (South Main Street) at Scantic Road	A	7.3	0.60	A	4.7	0.44
Base (2040) Traffic Forecast						
Route 5 (South Main Street) at Phelps Road (Route 191)	A	5.5	0.77	A	8.1	0.84
Route 5 (South Main Street) at SAA Driveways	B	18.1	0.89	C	23.1	0.96
Route 5 (South Main Street) at Stoughton Road	A	9.0	0.77	B	15.4	0.94
Route 5 (South Main Street) at Abbe Road	B	11.0	0.71	A	8.1	0.88
Route 5 (South Main Street) at Scantic Road	B	14.1	0.71	A	8.9	0.66
Build (2040) Traffic Forecast						
Route 5 (South Main Street) at Phelps Road (Route 191)	C	24.8	1.07	D	46.7	1.09
Route 5 (South Main Street) at SAA Driveways	E	57.4	1.18	E	65.9	1.17
Route 5 (South Main Street) at Stoughton Road	B	14.1	0.97	D	54.0	1.15
Route 5 (South Main Street) at Abbe Road	B	17.2	0.91	C	29.6	1.06
Route 5 (South Main Street) at Scantic Road	B	15.4	0.79	A	9.8	0.73

Phelps Road (Route 191) Intersection (S-I)
At the Phelps Road intersection, this alternative would widen Route 5 to provide a southbound left turn lane. Phelps Road would be widened to provide an eight-foot-wide shoulder, allowing right turning vehicles the opportunity to bypass left turning traffic.

The northbound right turn lane would be retained as part of the reconstruction of Route 5 . South of the intersection the roadway configuration would transition to the road diet section. This would convert the existing four-lane section to a three-lane section with a two-way left-turn lane.

A landscaped median would be provided south of the intersection, shadowing the southbound left turn lane. The proposed multi-use sidepath would follow the west side of Route 5 .

Stoughton Road Intersection (S-I)
At the Stoughton Road intersection, this alternative would widen Route 5 to provide northbound and southbound left turn lanes. South of the intersection, the roadway would transition to its existing two-lane section, one lane in each direction.

Figure 92: Southern Alternative I (S-I) Phelps Road Inset

Figure 93: Southern Alternative I (S-I) Stoughton Road Inset

Abbe Road Intersection (S-I)

At the Abbe Road intersection, this alternative would widen Route 5 to provide northbound and southbound left turn lanes and a southbound right turn lane. North and south of the intersection, Route 5 would transition to its existing cross section, with one lane in each direction. The proposed multi-use sidepath would follow the west side of Route 5.

Scantic Road Intersection
At the Scantic Road intersection, this alternative would provide a southbound left turn lane to Scantic Road and the land uses on the east side of Route 5. Due to the wide landscaped median south of the intersection, an offset southbound left turn lane is recommended.

Figure 94: Southern Alternative I (S-I) Abbe Road Inset

Figure 95: Southern Alternative I (S-I) Scantic Road Inset

5.3.6.2 Southern Alternative 2 (S-2)

Alternative S-2 would address the expected traffic operational deficiencies under the Base and Build scenarios between Tromley Road and Phelps Road. The sidepath recommended in Alternative S-I would need to be relocated to facilitate the widened roadway. This alternative would be a continuation of the recommendations in Central Alternative 2 (C-2). The southern boundary of this alternative would have the roadway transition to meet Southern Alternative I (S-I).

Key Features:

- Widen Route 5 to provide two through lanes in each direction
- Provide two-way left turn lane in areas with concentration of commercial and consolidated residential access
- Provide landscaped median in other areas as traffic calming and safety measure
- Bus stops with shelters near Phelps Road / Build Site 6
- Relocate or maintain similar bicyclist and pedestrian improvements as Alternative S-I

Table 54: Evaluation Criteria for Alternative S-2

Objective	Rating	Notes
Turn lanes		Turn lanes provided at all intersections
Traffic operations		Satisfactory operations under all scenarios.
Queuing		Satisfactory queuing under all scenarios. Phansit stop and amenities recommended to serve Transit
Bike / Ped	Addresses existing bicyclist and pedestrian deficiencies	

The estimated cost to implement this alternative is $\$ 10.2$ million. See Chapter 6 for information on how this alternative is recommended as part of the study's implementation plan.

Traffic Operations (S-2)
Traffic operational analysis was conducted for Alternative S-2 using the Existing, Base and Build traffic forecasts. The intersection of Route 5 and Phelps Road, the only signalized intersection within the limits of this alternative, would operate acceptably under all forecasts.

The introduction of this alternative would only be warranted if developments of the scale identified in the Build scenario occur. CTDOT and the Town should monitor future development plans. As any plans become realities, the need to widen this segment of Route 5 should be considered, based on the projected traffic demands.

Table 55: Southern Alternative 2 (S-2) Traffic Operations

Intersection	Weekday AM Peak			Weekday PM Peak		
	LOS	Delay (sec / veh)	Max. V/C Ratio	LOS	Delay (sec / veh)	Max V/C Ratio
Existing (2017) Traffic Volumes						
Route 5 (South Main Street) at Phelps Road (Route 191)	A	2.4	0.34	A	5.0	0.36
Base (2040) Traffic Forecast						
Route 5 (South Main Street) at Phelps Road (Route 191)	A	4.6	0.42	A	4.8	0.45
Build (2040) Traffic Forecast						
Route 5 (South Main Street) at Phelps Road (Route 191)	A	6.8	0.62	A	7.3	0.59

Phelps Road (Route 191) Intersection (S-2)
At the Phelps Road intersection, this alternative would widen Route 5 to provide two through lanes in each direction. With the improved overall operation of the intersection, the existing northbound right turn lane would be converted to a through-right lane. An eight foot shoulder would be provided on northbound Route 5.

The proposed multi-use sidepath would follow the west side of Route 5 . New bus stops with shelters and sidewalks are proposed. The two bus stops would be far-side stops. Sidewalk connections are recommended to be provided to Build Site 6.

Figure 97: Southern Alternative 2 (S-2) Phelps Road Inset

5.3.6.3 Southern Alternative 3 (S-3)

Alternative S-3 would address the expected traffic operational deficiencies under the Base and Build scenarios between Phelps Road and Scantic Road. The sidepath recommended in Alternative S-I would need to be relocated to facilitate the widened roadway. This alternative would be a continuation of the recommendations in Southern Alternative 2 (S-2).

Key Features:

- Widen Route 5 to provide two through lanes in each direction
- Provide two-way left turn lane in areas with concentration of commercial and consolidated residential access
- Provide landscaped median in other areas as traffic calming and safety measure
- Relocate or maintain similar bicyclist and pedestrian improvements as Alternative S-I

Table 56: Evaluation Criteria for Alternative S-3

Objective	Rating	Notes
Turn lanes	T	Turn lanes provided at all intersections
Traffic operations	A	Satisfactory operations under all scenarios.
Queuing	A	Satisfactory queuing under all scenarios.
Transit	\square	Based on the current and proposed land uses, opportunities for bus stops with shelters are limited
Bike / Ped	Addresses existing bicyclist and pedestrian deficiencies	

The estimated cost to implement this alternative is $\$ 17.3$ million. See Chapter 6 for information on how this alternative is recommended as part of the study's implementation plan.

Figure 99: Southern Alternative 3 (S-3) (2 of 2)

Traffic Operations (S-3)
Traffic operational analysis was conducted for Alternative S-3 using the Existing, Base and Build traffic forecasts. The intersections within this segment would operate acceptably under all traffic scenarios.

The introduction of this alternative would only be warranted if developments of the scale identified in the Build scenario occur. CTDOT and the Town should monitor future development plans. As any plans become realities, the need to widen this segment of Route 5 should be considered, based on the projected traffic demands.

Table 57: Southern Alternative 3 (S-3) Traffic Operations

Intersection	Weekday AM Peak			Weekday PM Peak		
	LOS	Delay (sec I veh)	Max. V/C Ratio	LOS	Delay (sec / veh)	Max V/C Ratio
Existing (2017) Traffic Volumes						
Route 5 (South Main Street) at Southern Auto Auction (SAA) Driveways)	A	6.0	0.38	A	4.0	0.41
Route 5 (South Main Street) at Stoughton Road	A	4.2	0.43	A	3.6	0.45
Route 5 (South Main Street) at Abbe Road	A	4.2	0.44	A	1.7	0.38
Route 5 (South Main Street) at Scantic Road	A	9.2	0.57	A	6.8	0.50
Base (2040) Traffic Forecast						
Route 5 (South Main Street) at SAA Driveways	A	5.9	0.50	A	4.3	0.51
Route 5 (South Main Street) at Stoughton Road	A	4.5	0.48	A	5.2	0.51
Route 5 (South Main Street) at Abbe Road	A	5.4	0.58	A	2.5	0.46
Route 5 (South Main Street) at Scantic Road	B	13.8	0.82	A	6.8	0.61
Build (2040) Traffic Forecast						
Route 5 (South Main Street) at SAA Driveways	A	8.3	0.66	A	5.4	0.61
Route 5 (South Main Street) at Stoughton Road	A	5.7	0.53	A	9.6	0.61
Route 5 (South Main Street) at Abbe Road	A	6.2	0.58	A	2.7	0.56
Route 5 (South Main Street) at Scantic Road	B	15.4	0.79	A	6.7	0.65

Stoughton Road Intersection (S-3)
At the Stoughton Road intersection, this alternative would widen Route 5 to provide two lanes in each direction. Both north and south of the intersection, the roadway would feature a two-way left turn lane.

The proposed multi-use sidepath is recommended for the west side of Route 5.

Abbe Road Intersection (S-3)
At the Stoughton Road intersection, this alternative would widen Route 5 to provide two lanes in each direction. North of the intersection, the roadway would feature a two-way left turn lane. South of the intersection, a landscaped median is recommended. Sue to the proximity of the Century Auto \& Truck Center driveway to the signalized intersection, consolidation of access with the adjacent Dunkin driveway is recommended.

The proposed multi-use sidepath is recommended on the west side of Route 5.

Figure 100: Southern Alternative 3 (S-3) Stoughton Road Inset

Figure IOI: Southern Alternative 3 (S-3) Abbe Road Inset

Scantic Road Intersection (S-3)
At the Scantic Road intersection, this alternative would provide a southbound left turn lane to Scantic Road and the land uses on the east side of Route 5. Due to the wide landscaped median south of the intersection, an offset southbound left turn lane is recommended. The proposed multi-use sidepath could either terminate or be continued southerly into South Windsor.

Figure I02: Southern Alternative 3 (S-3) Scantic Road Inset)

6 Implementation Plan and Funding Opportunities

This section of the report summarizes the recommended implementation plan for the alternatives analyzed in Chapter 5. It also identifies potential funding mechanisms that the Town of East Windsor, CRCOG and CTDOT.

6.I Implementation Plan

The study team has identified three types of improvement recommendation from the previously identified alternatives:

Near Term: Improvements that address existing needs, are relatively low cost and low impact (environmental, ROW) and could / should be pursued immediately.

Mid Term: Improvements that address existing future Base scenario needs, are higher cost and could have potential environmental and ROW impacts. These alternatives would either require environmental review (if initiated immediately) or could have outside actions, such as development, that would
trigger the need to implement them.

Long Term: Improvements that address future Build scenario needs, are high cost and likely require environmental and ROW impacts. These alternatives have outside actions, such as development, that would trigger the need to implement them.

The alternatives presented in Chapter 5 are listed in Table 58, right, and classified by the type of improvement recommendation.

6.2 Cost Estimating

Planning-level cost estimates were prepared for each alternative. Table 58, below, includes these costs for the current year (2021) and escalated to the year 2025 and 2030, using a rate of inflation of 3.5% consistent with CTDOT estimating guidelines. The costs are program costs, and include costs to complete engineering and necessary right-of-way acquisition in addition to construction.

Table 58: Implementation Plan

Alternative	Cost in 2021 \$ Cost in 2025 \$		Cost in 2030	Notes
Near Term				
$\mathrm{N}-\mathrm{I}$	\$1,850,000	\$2,130,000	\$2,530,000	Could all be implemented immediately
New-1	\$2,000,000	\$2,300,000	\$2,730,000	
Main-I	\$750,000	\$870,000	\$1,030,000	
C-I	\$4,800,000	\$5,510,000	\$6,550,000	
S-I	\$7,400,000	\$8,500,000	\$10,090,000	
Mid Term				
Main-2	\$1,250,000	\$1,440,000	\$1,710,000	Could be implemented immediately
C-2	\$9,540,000	\$10,950,000	\$13,010,000	Should be implemented with development of MMCT casino or other significant development on that site and completion of Base scenario developments
N-2	\$5,200,000	\$7,090,000	\$7,600,000	
Long Term				
N-3	\$2,300,000	\$3,140,000	\$3,360,000	Should be implemented with development of the Build scenario sites
New-5	\$1,200,000	\$1,380,000	\$1,640,000	
S-2	\$10,190,000	\$11,700,000	\$13,010,000	
S-3	\$17,300,000	\$19,860,000	\$23,580,000	
Alternatives in Need of Further, Separate Study				
New-3				Alternatives need to be evaluated in
New-4				
Alternative Dismissed				
New-2				Alternative not recommended for further study

6.3 Funding Opportunities

There are several different types of both state and federal funding that could be used by the Town, CRCOG and CTDOT. These are documented in Table 59, below. Additionally, as potential developments occur within the corridor, opportunities should be taken to improve the sidewalk, sidepath and transit amenities. The Town may also use the access management appendix in assessing potential changes to or new developments.

Table 59: Potential Funding Programs

Program	State / Federal	Notes
Congestion Mitigation and Air Quality Improvement Program (CMAQ)	Federal	Discretionary grant program managed by FHWA. Primary goal to improve air quality.
Local Transportation Capital Improvement Program (LoTCIP)	State	Discretionary grant program managed by CTDOT.
Rebuilding American Infrastructure with Sustainability and Equity (RAISE)	Federal	Discretionary grant program managed by USDOT, prioritizes economy, safety and the environment
Local Capital Improvement Program (LoCIP)	State	State managed formula-based entitlement funds for municipal projects
Transportation Alternatives Program (TAP)	Federal	FHWA managed program funding non-driver access to transportation
Surface Transportation Program (STP)	Federal	The most flexible Federal-aid highway program
National Highway Performance Program (NHPP)	Federal	Federal program aimed at helping highway facilities meet local performance measures

7 Public Involvement and Endorsements

Public involvement for the Project included focused interviews with critical stakeholders throughout the corridor, presence at two pop-up events to spread awareness of the project, and two formal public informational meetings, one in person and one online. In addition to these meetings, there were two newsletters and a 16 -question survey, which collected 182 responses, as well as eight Advisory Committee meetings.

This table presents the date and purpose of each public involvement activity.

Meeting Date	Meeting Type	Purpose
$4 / 21 / 2018$	Pop-Up Event	Project booth at Abby's Walk
$5 / 3 / 2018$	Stakeholder Meeting	Meeting with East Windsor Town Planning
$5 / 18 / 2018$	Stakeholder Meeting	Meeting with East Windsor Police Department
$5 / 24 / 2018$	Stakeholder Meeting	Meeting with East Windsor Department of Public
Works		

RESOLUTION
 FOR ENDORSEMENT OF THE
 ROUTE 5 (EAST WINDSOR) CORRIDOR STUDY

whereas, the Capitol Region Council of Governments worked with the Connecticut Department of Transportation (CTDOT) and the Town of East Windsor to undertake the Route 5 Corridor Study to evaluate traffic and development along this corridor; and

WHEREAS, the study aimed to develop a comprehensive transportation plan for the Route 5 Corridor in East Windsor to address safety, congestion, and mobility of the transit system, pedestrians, and bicyclists and that would assess travel demand growth and its impacts on area roadways, including traffic associated with development within the study area; and

WHEREAS, the study analyzed existing roadway and traffic conditions, land use and development, pedestrians and bicyclists, and transit routes within the study area, which is approximately five miles in length along Route 5 in the Town of East Windsor; and

WHEREAS, the Route 5 Study Advisory Committee, which included representatives of the Town of East Windsor, East Windsor Planning and Zoning Commission, East Windsor Public Works, East Windsor Public Schools, local businesses, town residents, CTDOT, and other stakeholders, met throughout the study to provide input; and
WHEREAS, the public had numerous opportunilies to offer input via a study website, public open house meetings and Advisory Committee meetings, emailed newsletters, a presentation of the draft recommendations, and a 30 -day public comment period on the DRAFT Recommendations and Implementation Plan; and

WHEREAS, the Town of East Windsor Board of Selectmen has reviewed the study, has found its recommendations to be reasonable, and has endorsed the effort; and

WHEREAS, the CRCOG Transportation Committee has reviewed the study, has found its recommendations to be reasonable, and has endorsed the effort;
NOW THEREFORE BE IT RESOLVED THAT, the Capitol Region Council of Governments does hereby endorse the recommendations of the Route 5 (East Windsor) Corridor Study as described in the Recommendations and Implementation Plan. Furthermore, study documents may be marked FINAL and dated November 2021, and study recommendations may henceforth be incorporated into agency planning documents.

CERTIFICATE

I certify the above is a true capy of a resolution adopted by the Policy Board at its meeting held on November 17, 2021
 DATE: \qquad
LoriL. Spielman, Secretary

AUTHORIZING RESOLUTION

FOR ADOPTION OF THE

 ROUTE 5 (EAST WINDSOR) CORRIDOR STUDY FINAL REPORTWHEREAS, the Capitol Region Council of Governments undertook an effort to develop a recommendation and implementation plan to create a multimodal transportation system that supports continued social and economic growth in the Route 5 corridor; and

WHEREAS, the study process included a variety of opportunities for public and stakeholder involvement and inputs to guide the project; and

WHEREAS, the study investigated potential impacts on the Title VI and Limited English Proficiency populations; and
WHEREAS, regional and local stakeholders were engaged throughout the study process; and WHEREAS, the public had sufficient opportunity to offer input on study findings in accordance with CRCOG's Public Participation Plan; and

WHEREAS, the study team determined several locations along Route 5 for potential improvements based on public inputs and existing conditions as well as future scenario;
NOW THEREFORE BE IT RESOLVED THAT, the East Windsor Board of Selectmen does hereby endorse the Final Report for the Route 5 Corridor Study - dated November 4, 2021.

CERTIFICATE
certify the above is a true copy of a resolution adopted by the East Windsor Board of Selectmen at its meeting held on November 4, 2021.

DATE: \qquad

DATE: November 5,2021

Appendix I - Build Development Sites

Site I - Hotel with Supporting Commercial Uses

Site 2 - Restaurant

Site 3 - Mixed-use Commercial

Site 4 - Mixed-use Commercial

Site 5 - Industrial Park

Site 6 - Industrial Park

Site 7 - Agricultural Distribution

Appendix 2 - Build Scenario Trip Generation

Site 2																		
Route 5 North of I-91 $\times 44$												Trip Generation						
												AM				PM		
Parcel	Use	Square Footage (min)	Square Footage (max)	Acreage (min)	Acreage (max)	Acres Available	Existing Zone	Remove Existing	Time Frame	Employees	ITE LUC	Daily	Enter	Exit	Total	Enter	Exit	Total
1	Mixed Commercial	4000	5000	0.5	1.5	8.23	HIFZ	Yes (not currently in use)	5+Years	20	932	505	25	20	45	27	17	44
z	targeclinie	40000	40000	3.5	4	8.23	HFZ	Yes(noteurrently inuse)	51 Years									
Fotal		44000	45000	4	5.5													
Average		4500	square feet	4.75	acres						TOTAL	505	25	20	45	27	17	44

Route 5 Corridor Study - Final Report

Site 4																	
Route 5	at Regina Drive													Genera			
													AM			PM	
Parcel	Use	Square Footage (min)	Square Footage (max)	Acreage (min)	Acreage (max)	Acres Available	Existing Zone	Remove Existing	Employees	ITE LUC	Daily	Enter	Exit	Total	Enter	Exit	Total
1	Mixed Commercial	1500	2000	0.25	1	20.7	B-2	No (Assumes dividing parcel)	10	937	1641	91	87	178	43	44	87
2	Mixed Commercial	1500	2000	0.25	1	20.7	B-2	No (Assumes dividing parcel)	4	816	18	1	1	2	2	3	5
3	Mixed Commercial (suggested, office or restaurant use)	6000	6000	1	1.5	20.7	B-2	No (Assumes dividing parcel)	30	931	503	2	2	4	31	16	47
Total		9000	10000	1.5	3.5						2162	94	90	184	76	63	139
Average		9500	square feet	2.5	acres												

Site 5																	
Tromley Road Industrial Park											Trip Generation						
											AM				PM		
Parcel	Use	Square Footage (min)	Square Footage (max)	Acreage (min)	Acreage (max)	Acres Available	Existing Zone	Remove Existing	Employees	ITE LUC	Daily	Enter	Exit	Total	Enter	Exit	Total
$1-14$	Industrial or Office Park	4000	50000	50	150	160	Agricultural Residential	All new development- Combine 2 parcels	650	130	2583	227	53	280	59	221	280
Total		56000	700000	50	150												
Average		378000	square feet	100	acres												
										TOTAL	2583	227	53	280	59	221	280

Route 5 Corridor Study - Final Report

Appendix 3 - Traffic Operational Analysis

	4	\rightarrow	\%			4	4	4	\%	(4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow			\$		${ }^{7}$	4		${ }^{7}$	\uparrow	
Traffic Volume (vph)	110	0	154	20	10	20	44	312	0	10	400	44
Future Volume (vph)	110	0	154	20	10	20	44	312	0	10	400	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	150		0	150		0
Storage Lanes	1		0	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.946						0.985	
Flt Protected	0.950				0.980		0.950			0.950		
Satd. Flow (prot)	1770	1583	0	0	1727	0	1770	1863	0	1770	1835	0
Flt Permitted	0.822				0.623		0.425			0.950		
Satd. Flow (perm)	1531	1583	0	0	1098	0	792	1863	0	1770	1835	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		504			22						11	
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		335			295			682			908	
Travel Time (s)		7.6			6.7			10.3			13.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	120	0	167	22	11	22	48	339	0	11	435	48
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	120	167	0	0	55	0	48	339	0	11	483	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			20	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru										
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Prot	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2				6	

	\rangle						4	\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	10.0	10.0		10.0	10.0		9.5	22.5		9.5	22.5	
Total Split (s)	15.5	15.5		15.5	15.5		16.0	65.0		9.5	58.5	
Total Split (\%)	17.2\%	17.2\%		17.2\%	17.2\%		17.8\%	72.2\%		10.6\%	65.0\%	
Maximum Green (s)	11.0	11.0		11.0	11.0		11.5	60.5		5.0	54.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.5	4.5			4.5		4.5	4.5		4.5	4.5	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	
Act Efft Green (s)	10.2	10.2			10.2		70.2	68.9		5.2	64.3	
Actuated g/C Ratio	0.11	0.11			0.11		0.78	0.77		0.06	0.71	
v / c Ratio	0.69	0.27			0.38		0.07	0.24		0.11	0.37	
Control Delay	59.3	1.0			33.0		1.0	2.0		47.7	2.9	
Queue Delay	0.0	0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay	59.3	1.0			33.0		1.0	2.0		47.7	2.9	
LOS	E	A			C		A	A		D	A	
Approach Delay		25.4			33.0			1.9			3.9	
Approach LOS		C			C			A			A	
90th \%ile Green (s)	11.0	11.0		11.0	11.0		6.7	60.5		5.0	58.8	
90th \%ile Term Code	Max	Max		Max	Max		Gap	Coord		Max	Coord	
70th \%ile Green (s)	11.0	11.0		11.0	11.0		6.3	70.0		0.0	59.2	
70th \%ile Term Code	Max	Max		Hold	Hold		Gap	Coord		Skip	Coord	
50th \%ile Green (s)	11.0	11.0		11.0	11.0		6.0	70.0		0.0	59.5	
50th \%ile Term Code	Max	Max		Hold	Hold		Gap	Coord		Skip	Coord	
30th \%ile Green (s)	10.6	10.6		10.6	10.6		0.0	70.4		0.0	70.4	
30th \%ile Term Code	Gap	Gap		Hold	Hold		Skip	Coord		Skip	Coord	
10th \%ile Green (s)	7.6	7.6		7.6	7.6		0.0	73.4		0.0	73.4	
10th \%ile Term Code	Gap	Gap		Hold	Hold		Skip	Coord		Skip	Coord	
Stops (vph)	100	0			32		4	43		12	65	
Fuel Used(gal)	2	0			1		0	2		0	4	
CO Emissions (g/hr)	152	30			44		18	143		21	257	
NOx Emissions (g/hr)	29	6			9		3	28		4	50	
VOC Emissions (g/hr)	35	7			10			33		5	60	
Dilemma Vehicles (\#)	0	0			0		0	14		0	11	
Queue Length 50th (t)	66	0			17		3	20		6	48	
Queue Length 95th (f)	\#140	0			54		1	66		m14	m51	
Internal Link Dist (ft)		255			215			602			828	
Turn Bay Length (ft)							150			150		
Base Capacity (vph)	187	635			153		747	1425		102	1313	
Starvation Cap Reductn	0	0			0		0	0		0	0	
Spillback Cap Reductn	0	0			0		0	0		0	0	
Storage Cap Reductn	0	0			0		0	0		0	0	
Reduced v/c Ratio	0.64	0.26			0.36		0.06	0.24		0.11	0.37	

Intersection Summary \quad Other
Area Type: \quad Cycle Length: $90 \quad$ Intersection LOS: A
Actuated Cycle Length: $90 \quad$ ICU Level of Service B
Offset: 2 (2\%), Referenced to phase 2:NBTL and 6:SBT, Start of Yellow
Natural Cycle: 45
Control Type: Actuated-Coordinated
Maximum v/c Ratio: $0.69 \quad$
Intersection Signal Delay: $9.6 \quad$
Intersection Capacity Utilization 56.6%
Analysis Period (min) 15
$\#$ 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
molume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 7: MMCT Casino/Eversource

	1				\pm	$\frac{1}{7}$		
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	$\varnothing 1$	$\varnothing 2$
Lane Configurations	${ }^{7}$	「	性		${ }^{1}$	44		
Traffic Volume (vph)	87	171	796	114	226	1145		
Future Volume (vph)	87	171	796	114	226	1145		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Storage Length (ft)	0	100		0	0			
Storage Lanes	1	1		0	1			
Taper Length (ft)	25				25			
Lane Util. Factor	1.00	1.00	0.95	0.95	1.00	0.95		
Frt		0.850	0.981					
Flt Protected	0.950				0.950			
Satd. Flow (prot)	1517	1495	3294	0	1770	3406		
Flt Permitted	0.950				0.950			
Satd. Flow (perm)	1517	1495	3294	0	1770	3406		
Right Turn on Red		Yes		Yes				
Satd. Flow (RTOR)		86	23					
Link Speed (mph)	25		45			45		
Link Distance (ft)	1258		264			430		
Travel Time (s)	34.3		4.0			6.5		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Heavy Vehicles (\%)	19\%	8\%	8\%	4\%	2\%	6\%		
Adj. Flow (vph)	95	186	865	124	246	1245		
Shared Lane Traffic (\%)								
Lane Group Flow (vph)	95	186	989	0	246	1245		
Enter Blocked Intersection	No	No	No	No	No	No		
Lane Alignment	Left	Right	Right	Right	Left	Left		
Median Width(ft)	30		12			20		
Link Offset(ft)	0		0			0		
Crosswalk Width(ft)	16		16			16		
Two way Left Turn Lane								
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Turning Speed (mph)	15	9		9	15			
Number of Detectors	1	1	2		1	0		
Detector Template								
Leading Detector (ft)	34	34	100		34	0		
Trailing Detector (ft)	0	0	0		0	0		
Detector 1 Position(ft)	0	0	0		0	0		
Detector 1 Size(ft)	34	34	6		34	6		
Detector 1 Type	Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	Cl+Ex		
Detector 1 Channel								
Detector 1 Extend (s)	0.0	0.0	0.0		0.0	0.0		
Detector 1 Queue (s)	0.0	0.0	0.0		0.0	0.0		
Detector 1 Delay (s)	0.0	8.0	0.0		0.0	0.0		
Detector 2 Position(ft)			94					
Detector 2 Size(ft)			6					
Detector 2 Type			$\mathrm{Cl}+\mathrm{Ex}$					
Detector 2 Channel								
Detector 2 Extend (s)			0.0					
Turn Type	Prot	pm+ov	NA		Prot	NA		
Protected Phases	4	5	6		5	125	1	2

Intersection Summary

Area Type: Other

Cycle Length: 90
Actuated Cycle Length: 90
Offset: 49 (54\%), Referenced to phase 2:SBT and 6:NBT, Start of Yellow
Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.78
Intersection Signal Delay: 16.8 Intersection LOS: B
Intersection Capacity Utilization 58.2\% ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 21: Thompson Rd

	4	\rightarrow		7			4	4	\%			4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		*		${ }^{7}$	44		${ }^{*}$	1t	
Traffic Volume (vph)	29	0	114	1	0	3	67	898	2	5	1256	0
Future Volume (vph)	29	0	114	1	0	3	67	898	2	5	1256	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		100	0		0	0		0	700		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor								1.00		1.00		
Frt			0.850		0.899							
Flt Protected		0.950			0.988		0.950			0.950		
Satd. Flow (prot)	0	1719	1509	0	1688	0	1530	3374	0	1805	3406	0
Flt Permitted		0.755			0.935		0.950			0.950		
Satd. Flow (perm)	0	1366	1509	0	1597	0	1530	3374	0	1804	3406	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			182		182							
Link Speed (mph)		30			25			45			45	
Link Distance (ft)		731			393			430			1397	
Travel Time (s)		16.6			10.7			6.5			21.2	
Confl. Peds. (\#/hr)									1	1		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	5\%	0\%	7\%	0\%	0\%	0\%	18\%	7\%	0\%	0\%	6\%	0\%
Adj. Flow (vph)	32	0	124	1	0	3	73	976	2	5	1365	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	32	124	0	4	0	73	978	0	5	1365	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Right	Right
Median Width(ft)		0			0			24			30	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		1	0		1	2	
Detector Template	Left			Left			Left					
Leading Detector (ft)	20	29	29	20	29		34	0		29	306	
Trailing Detector (ft)	0	-5	-5	0	-5		0	0		-5	150	
Detector 1 Position(ft)	0	-5	-5	0	-5		0	0		-5	150	
Detector 1 Size(ft)	20	34	34	20	34		34	6		34	6	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	8.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)											300	
Detector 2 Size(ft)											6	
Detector 2 Type											Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)											0.0	

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA	Perm	Perm	NA		Prot	NA		Prot	NA	
Protected Phases		4			4		1	6		5	2	
Permitted Phases	4		4	4								
Detector Phase	4	4	4	4	4		1			5	2	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		5.0	15.0		5.0	15.0	
Minimum Split (s)	12.6	12.6	12.6	12.6	12.6		11.6	21.2		10.2	21.2	
Total Split (s)	16.8	16.8	16.8	16.8	16.8		19.2	47.0		26.2	54.0	
Total Split (\%)	18.7\%	18.7\%	18.7\%	18.7\%	18.7\%		21.3\%	52.2\%		29.1\%	60.0\%	
Maximum Green (s)	11.2	11.2	11.2	11.2	11.2		12.6	40.8		21.0	47.8	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0	4.8		3.0	4.8	
All-Red Time (s)	2.6	2.6	2.6	2.6	2.6		3.6	1.4		2.2	1.4	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		5.6	5.6		5.6		6.6	6.2		5.2	6.2	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5	1.5	1.5	1.5	1.5		1.5	2.5		1.5	2.5	
Recall Mode	None	None	None	None	None		None	C-Min		None	C-Min	
Act Effct Green (s)		9.3	9.3		9.3		8.4	47.6		16.0	56.2	
Actuated g/C Ratio		0.10	0.10		0.10		0.09	0.53		0.18	0.62	
v/c Ratio		0.23	0.39		0.01		0.51	0.55		0.02	0.64	
Control Delay		40.1	5.4		0.0		53.3	8.4		30.2	12.8	
Queue Delay		0.0	0.0		0.0		0.0	0.1		0.0	0.0	
Total Delay		40.1	5.4		0.0		53.3	8.5		30.2	12.8	
LOS		D	A		A		D	A		C	B	
Approach Delay		12.5						11.6			12.9	
Approach LOS		B						B			B	
90th \%ile Green (s)	11.2	11.2	11.2	11.2	11.2		12.2	40.8		21.0	48.2	
90th \%ile Term Code	Max	Max	Max	Max	Max		Gap	Coord		Max	Coord	
70th \%ile Green (s)	11.4	11.4	11.4	11.4	11.4		9.8	42.6		19.0	50.4	
70th \%ile Term Code	Gap	Gap	Gap	Gap	Gap		Gap	Coord		Gap	Coord	
50th \%ile Green (s)	9.5	9.5	9.5	9.5	9.5		8.2	47.1		16.4	53.9	
50th \%ile Term Code	Gap	Gap	Gap	Gap	Gap		Gap	Coord		Gap	Coord	
30th \%ile Green (s)	7.6	7.6	7.6	7.6	7.6		6.6	51.6		13.8	57.4	
30th \%ile Term Code	Gap	Gap	Gap	Gap	Gap		Gap	Coord		Gap	Coord	
10th \%ile Green (s)	7.0	7.0	7.0	7.0	7.0		0.0	56.0		10.0	71.2	
10th \%ile Term Code	Min	Min	Min	Min	Min		Skip	Coord		Gap	Coord	
Stops (vph)		28	6		0		66	212		6	824	
Fuel Used(gal)		1	1		0		2	7		0	25	
CO Emissions (g/hr)		39	56		1		121	468		11	1742	
NOx Emissions (g/hr)		8	11		0		24	91		2	339	
VOC Emissions (g/hr)		9	13		0		28	108		2	404	
Dilemma Vehicles (\#)		0	0		0		0	55		0	45	
Queue Length 50th (ft)		17	0		0		44	79		3	177	
Queue Length 95th (ft)		44	18		0		m81	94		m3	m460	
Internal Link Dist (ft)		651			313			350			1317	
Turn Bay Length (ft)			100							700		
Base Capacity (vph)		170	348		359		214	1785		421	2127	
Starvation Cap Reductn		0	0		0		0	107		0	0	

\rangle						4	\uparrow	p		\dagger	\downarrow
Lane Group EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Spillback Cap Reductn	0	0		0		0	0		0	0	
Storage Cap Reductn	0	0		0		0	0		0	0	
Reduced v/c Ratio	0.19	0.36		0.01		0.34	0.58		0.01	0.64	
Intersection Summary											
Area Type: Other	Other										
Cycle Length: 90											
Actuated Cycle Length: 90											
Offset: 49 (54\%), Referenced to phase 2:SBT and 6:NBT, Start of Yellow											
Natural Cycle: 60											
Control Type: Actuated-Coordinated											
Maximum v/c Ratio: 0.78											
Intersection Signal Delay: 12.3			Intersection LOS: B								
Intersection Capacity Utilization 62.1\%			ICU Level of Service B								
Analysis Period (min) 15											

Splits and Phases: 201: South Main St (Rt-5) \& Main St (Rt-510)/Prospect Hill Plaza

	7			\%	\pm	$\frac{1}{1}$
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		4	7	${ }^{7}$	4
Traffic Volume (vph)	30	33	770	108	164	1131
Future Volume (vph)	30	33	770	108	164	1131
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	8	12
Storage Length (ft)	0	0		250	75	
Storage Lanes	1	0		1	1	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.930			0.850		
Flt Protected	0.977				0.950	
Satd. Flow (prot)	1652	0	1743	1615	1564	1776
Flt Permitted	0.977				0.222	
Satd. Flow (perm)	1652	0	1743	1615	366	1776
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	36			117		
Link Speed (mph)	30		45			45
Link Distance (ft)	1378		1115			1349
Travel Time (s)	31.3		16.9			20.4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	4\%	5\%	9\%	0\%	0\%	7\%
Adj. Flow (vph)	33	36	837	117	178	1229
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	69	0	837	117	178	1229
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			8
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.20	1.00
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		0	0	0	0
Detector Template						
Leading Detector (ft)	25		0	0	0	0
Trailing Detector (ft)	-5		0	0	0	0
Detector 1 Position(ft)	-5		0	0	0	0
Detector 1 Size(ft)	30		6	20	20	6
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
Turn Type	Prot		NA	$p m+o v$	D.P+P	NA
Protected Phases	4		2	4	1	12
Permitted Phases				2	2	
Detector Phase	4					
Switch Phase						
Minimum Initial (s)	5.0		15.0	5.0	5.0	

					t	$\frac{1}{\dagger}$
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Split (s)	9.4		22.8	9.4	9.0	
Total Split (s)	9.4		65.6	9.4	15.0	
Total Split (\%)	10.4\%		72.9\%	10.4\%	16.7\%	
Maximum Green (s)	5.0		57.8	5.0	11.0	
Yellow Time (s)	3.0		4.8	3.0	3.0	
All-Red Time (s)	1.4		3.0	1.4	1.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	4.4		7.8	4.4	4.0	
Lead/Lag			Lag		Lead	
Lead-Lag Optimize?						
Vehicle Extension (s)	1.5		3.0	1.5	3.0	
Recall Mode	None		C-Max	None	Max	
Act Effct Green (s)	5.0		57.8	68.7	74.5	79.3
Actuated g/C Ratio	0.06		0.64	0.76	0.83	0.88
v/c Ratio	0.55		0.75	0.09	0.38	0.79
Control Delay	41.1		14.1	0.5	5.2	6.2
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	41.1		14.1	0.5	5.2	6.2
LOS	D		B	A	A	A
Approach Delay	41.1		12.4			6.1
Approach LOS	D		B			A
90th \%ile Green (s)	5.0		57.8	5.0	11.0	
90th \%ile Term Code	Max		Coord	Max	MaxR	
70th \%ile Green (s)	5.0		57.8	5.0	11.0	
70th \%ile Term Code	Max		Coord	Max	MaxR	
50th \%ile Green (s)	5.0		57.8	5.0	11.0	
50th \%ile Term Code	Max		Coord	Max	MaxR	
30th \%ile Green (s)	5.0		57.8	5.0	11.0	
30th \%ile Term Code	Max		Coord	Max	MaxR	
10th \%ile Green (s)	0.0		57.8	0.0	20.4	
10th \%ile Term Code	Skip		Coord	Skip	MaxR	
Stops (vph)	34		478	5	37	389
Fuel Used(gal)	1		17	1	4	33
CO Emissions (g/hr)	97		1154	87	310	2273
NOx Emissions (g/hr)	19		225	17	60	442
VOC Emissions (g/hr)	23		267	20	72	527
Dilemma Vehicles (\#)	0		64	0	0	7
Queue Length 50th (ft)	18		280	2	2	110
Queue Length 95th (ft)	\#71		419	4	m0	m156
Internal Link Dist (ft)	1298		1035			1269
Turn Bay Length (ft)				250	75	
Base Capacity (vph)	125		1119	1261	474	1564
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.55		0.75	0.09	0.38	0.79
Intersection Summary						
Area Type: Other						

Cycle Length: 90
Actuated Cycle Length: 90
Offset: $55(61 \%)$, Referenced to phase 2:NBSB, Start of Yellow
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.79

Intersection Signal Delay: 9.6	Intersection LOS: A
Intersection Capacity Utilization 70.7\%	ICU Level of Service C

Intersection Capacity Utilization 70.7\% ICU Level of Service C
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 205: Phelps Rd (CT-191)

	4	\rightarrow		\checkmark			4	4			$\frac{1}{7}$	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	4	Tr		$4{ }^{4}$		${ }^{7}$	个F		${ }^{7}$	中4	「
Traffic Volume（vph）	148	307	942	35	352	35	628	245	57	60	284	331
Future Volume（vph）	148	307	942	35	352	35	628	245	57	60	284	331
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	350		290	0		200	400		0	205		130
Storage Lanes	1		2	0		1	2		0	2		1
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	0.95	0.95	0.88	0.95	0.95	0.95	0.97	0.95	0.95	1.00	0.95	1.00
Ped Bike Factor								1.00		0.99		
Frt			0.850		0.988			0.972				0.850
Flt Protected	0.950	0.998			0.996		0.950			0.950		
Satd．Flow（prot）	1603	1762	2733	0	3242	0	3273	3249	0	1703	3374	1583
Flt Permitted	0.950	0.998			0.996		0.950			0.950		
Satd．Flow（perm）	1603	1762	2733	0	3242	0	3273	3249	0	1693	3374	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			697		9			34				177
Link Speed（mph）		45			35			45			45	
Link Distance（ft）		734			813			1397			571	
Travel Time（s）		11.1			15.8			21.2			8.7	
Confl．Peds．（\＃／hr）									1	1		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	7\％	2\％	4\％	0\％	10\％	15\％	7\％	7\％	10\％	6\％	7\％	2\％
Adj．Flow（vph）	161	334	1024	38	383	38	683	266	62	65	309	360
Shared Lane Traffic（\％）	10\％											
Lane Group Flow（vph）	145	350	1024	0	459	0	683	328	0	65	309	360
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（ft）		33			12			32			24	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		1	2		1	2	0
Detector Template				Left								
Leading Detector（ft）	29	34	29	20	48		34	326		39	326	0
Trailing Detector（ft）	－5	0	－10	0	0		0	150		5	150	0
Detector 1 Position（ft）	－5	0	－10	0	0		0	150		5	150	0
Detector 1 Size（ft）	34	34	39	20	48		34	6		34	6	20
Detector 1 Type	Cl＋Ex	Cl＋Ex	Cl＋Ex	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$		Cl＋Ex	Cl＋Ex		Cl＋Ex	Cl＋Ex	Cl＋Ex
Detector 1 Channel												
Detector 1 Extend（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay（s）	0.0	0.0	8.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position（ft）								320			320	
Detector 2 Size（ft）								6			6	
Detector 2 Type								Cl＋Ex			Cl＋Ex	
Detector 2 Channel												
Detector 2 Extend（s）								0.0			0.0	

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Split	NA	pm+ov	Split	NA		Prot	NA		Prot	NA	pm+ov
Protected Phases	4	4	1	8	8		1	6		5	2	4
Permitted Phases			4								2	2
Detector Phase	4	4	4	8	8		1	6		5	2	2
Switch Phase												
Minimum Initial (s)	9.0	9.0	5.0	9.0	9.0		5.0	15.0		5.0	15.0	9.0
Minimum Split (s)	15.5	15.5	10.9	15.7	15.7		10.9	21.0		10.0	21.0	15.5
Total Split (s)	25.0	25.0	25.0	19.0	19.0		25.0	36.0		10.0	21.0	25.0
Total Split (\%)	27.8\%	27.8\%	27.8\%	21.1\%	21.1\%		27.8\%	40.0\%		11.1\%	23.3\%	27.8\%
Maximum Green (s)	18.5	18.5	19.1	12.3	12.3		19.1	30.0		5.0	15.0	18.5
Yellow Time (s)	3.3	3.3	3.0	4.1	4.1		3.0	4.8		3.0	4.8	3.3
All-Red Time (s)	3.2	3.2	2.9	2.6	2.6		2.9	1.2		2.0	1.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.5	6.5	5.9		6.7		5.9	6.0		5.0	6.0	6.5
Lead/Lag			Lead				Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	2.0	2.0	2.0		2.0	2.5		2.0	2.5	3.0
Recall Mode	None	None	None	None	None		None	C-Min		None	C-Min	None
Act Effct Green (s)	18.5	18.5	38.2		12.3		19.1	32.0		5.0	15.0	39.5
Actuated g/C Ratio	0.21	0.21	0.42		0.14		0.21	0.36		0.06	0.17	0.44
v/c Ratio	0.44	0.97	0.66		1.02		0.98	0.28		0.69	0.55	0.45
Control Delay	36.2	77.2	5.2		87.0		56.5	19.4		78.1	36.6	11.6
Queue Delay	0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	36.2	77.2	5.2		87.0		56.5	19.4		78.1	36.6	11.6
LOS	D	E	A		F		E	B		E	D	B
Approach Delay		24.8			87.0			44.5			28.0	
Approach LOS		C			F			D			C	
90th \%ile Green (s)	18.5	18.5	19.1	12.3	12.3		19.1	30.0		5.0	15.0	18.5
90th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	Max
70th \%ile Green (s)	18.5	18.5	19.1	12.3	12.3		19.1	30.0		5.0	15.0	18.5
70th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	Max
50th \%ile Green (s)	18.5	18.5	19.1	12.3	12.3		19.1	30.0		5.0	15.0	18.5
50th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	Max
30th \%ile Green (s)	18.5	18.5	19.1	12.3	12.3		19.1	30.0		5.0	15.0	18.5
30th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	Max
10th \%ile Green (s)	18.5	18.5	19.1	12.3	12.3		19.1	40.0		0.0	15.0	18.5
10th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Skip	Coord	Max
Stops (vph)	114	276	218		357		552	320		53	256	149
Fuel Used(gal)	3	10	8		13		20	8		2	6	4
CO Emissions (g/hr)	212	701	573		883		1383	553		128	444	270
NOx Emissions (g/hr)	41	136	111		172		269	108		25	86	53
VOC Emissions (g/hr)	49	162	133		205		320	128		30	103	63
Dilemma Vehicles (\#)	0	16	0		21		0	5		0	12	0
Queue Length 50th (ft)	76	209	30		~140		198	87		38	92	105
Queue Length 95th (ft)	136	\#389	53		\#244		\#304	87		\#108	110	18
Internal Link Dist (ft)		654			733			1317			491	
Turn Bay Length (ft)	350		290				400			205		130
Base Capacity (vph)	329	362	1561		450		694	1176		94	562	794
Starvation Cap Reductn	0	0	0		0		0	0		0	0	0

[^4]Synchro 10 Report Page 15

Splits and Phases: 209: I-91 Access/Egress/Newberry Rd

	4	\rightarrow		\bigcirc				\dagger	7		\dagger	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	＊	中4	「	${ }^{7}$	性		${ }^{71}$	4	「	${ }^{7}$	\uparrow	
Traffic Volume（vph）	216	370	97	127	898	129	207	205	30	52	220	75
Future Volume（vph）	216	370	97	127	898	129	207	205	30	52	220	75
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width（ft）	11	11	11	11	11	11	10	11	12	11	12	12
Storage Length（ft）	0		0	260		475	300		200	200		0
Storage Lanes	1		1	1		1	2		1	1		0
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	0.95	0.97	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor									0.99	1.00		
Frt			0.850		0.981				0.850		0.962	
Flt Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1558	3172	1516	1504	3276	0	3083	1640	1442	1517	1605	0
Flt Permitted	0.121			0.511			0.950			0.950		
Satd．Flow（perm）	198	3172	1516	809	3276	0	3083	1640	1423	1511	1605	0
Right Turn on Red			No			No			No			No
Satd．Flow（RTOR）												
Link Speed（mph）		35			45			45			45	
Link Distance（ft）		381			922			908			783	
Travel Time（s）		7.4			14.0			13.8			11.9	
Confl．Peds．（\＃／hr）									1	1		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	12\％	10\％	3\％	16\％	4\％	8\％	6\％	12\％	12\％	15\％	8\％	31\％
Adj．Flow（vph）	235	402	105	138	976	140	225	223	33	57	239	82
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	235	402	105	138	1116	0	225	223	33	57	321	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（ft）		11			11			20			20	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.09	1.04	1.00	1.04	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		12	15		12
Number of Detectors	1	1	0	1	1		1	1	1	1	1	
Detector Template												
Leading Detector（ft）	29	256	0	30	315		29	29	29	29	29	
Trailing Detector（ft）	－5	250	0	－5	310		－5	－5	－5	－5	－5	
Detector 1 Position（ft）	－5	250	0	－5	310		－5	－5	－5	－5	－5	
Detector 1 Size（ft）	34	6	20	35	5		34	34	34	34	34	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Turn Type	pm＋pt	NA	pm＋ov	pm＋pt	NA		Prot	NA	pm＋ov	Prot	NA	
Protected Phases	5	2	3	1	6		3	8	1	7	4	
Permitted Phases	2		2	6					8			
Detector Phase	5	2	2	1	6		3	8	8	7	4	

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
SBR											
Switch Phase											
Minimum Initial (s)	6.0	15.0	4.0	6.0	15.0		4.0	9.0	6.0	4.0	5.0
Minimum Split (s)	11.8	20.5	8.0	12.6	20.5		8.0	15.8	12.6	8.0	11.8
Total Split (s)	15.7	39.3	11.0	14.5	38.1		11.0	27.2	14.5	9.0	25.2
Total Split (\%)	17.4%	43.7%	12.2%	16.1%	42.3%	12.2%	30.2%	16.1%	10.0%	28.0%	
Maximum Green (s)	9.9	33.8	7.0	7.9	32.6		7.0	20.4	7.9	5.0	18.4
Yellow Time (s)	3.0	4.5	3.0	3.0	4.5	3.0	4.4	3.0	3.0	4.4	
All-Red Time e s)	2.8	1.0	1.0	3.6	1.0	1.0	2.4	3.6	1.0	2.4	
Lost Time Ajjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.8	5.5	4.0	6.6	5.5	4.0	6.8	6.6	4.0	6.8	
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lead	Lag	Lead	Lead	Lag	

Vehicle Extension (s)	1.5	4.0	1.5	1.5	4.0	1.5	2.5	1.5	1.5	2.5
Recall Mode	None	C-Min	None	None	C-Min	None	None	None	None	None
Act Effct Green (s)	43.4	33.8	46.7	38.3	32.0	7.4	22.8	30.3	4.9	18.6
Actuated g/C Ratio	0.48	0.38	0.52	0.43	0.36	0.08	0.25	0.34	0.05	0.21
v/c Ratio	0.96	0.34	0.13	0.34	0.96	0.89	0.54	0.07	0.69	0.97
Control Delay	70.8	21.9	9.7	14.4	47.1	74.6	32.5	14.2	81.7	80.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	70.8	21.9	9.7	14.4	47.1	74.6	32.5	14.2	81.7	80.1
LOS	E	C	A	B	D	E	C	B	F	F
Approach Delay		35.6			43.5		50.9			80.3
Approach LOS		D			D		D			F
90th \%ile Green (s)	9.9	33.8	7.0	7.9	32.6	7.0	20.4	7.9	5.0	18.4
90th \%ile Term Code	Max	Coord	Max	Max	Coord	Max	Max	Max	Max	Max
70th \%ile Green (s)	9.9	33.8	7.0	7.9	32.6	7.0	20.4	7.9	5.0	18.4
70th \%ile Term Code	Max	Coord	Max	Max	Coord	Max	Hold	Max	Max	Max
50th \%ile Green (s)	9.9	33.8	7.0	7.9	32.6	7.0	20.4	7.9	5.0	18.4
50th \%ile Term Code	Max	Coord	Max	Max	Coord	Max	Hold	Max	Max	Max
30th \%ile Green (s)	9.9	34.7	7.0	7.0	32.6	7.0	20.4	7.0	5.0	18.4
30th \%ile Term Code	Max	Coord	Max	Gap	Coord	Max	Hold	Gap	Max	Max
10th \%ile Green (s)	9.9	32.9	8.9	6.0	29.8	8.9	32.2	6.0	0.0	19.3
10th \%ile Term Code	Max	Coord	Gap	Min	Coord	Gap	Hold	Min	Skip	Max
Stops (vph)	139	258	44	72	907	159	166	21	46	250
Fuel Used(gal)	5	5	1	2	27	6	5	1	2	9
CO Emissions (g/hr)	332	322	55	142	1907	443	324	37	119	658
NOx Emissions (g/hr)	65	63	11	28	371	86	63	7	23	128
VOC Emissions (g/hr)	77	75	13	33	442	103	75	9	28	153
Dilemma Vehicles (\#)	0	33	0	0	55	0	12	0	0	15
Queue Length 50th (ft)	91	84	29	39	318	54	107	10	33	183
Queue Length 95th (ft)	\#240	135	44	71	\#455	\#132	190	m21	\#95	\#349
Internal Link Dist (ft)		301			842		828			703
Turn Bay Length (ft)				260		300		200	200	
Base Capacity (vph)	245	1197	775	410	1186	252	414	480	84	331
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.96	0.34	0.14	0.34	0.94	0.89	0.54	0.07	0.68	0.97

Intersection Summary

Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 90
Offset: 14 (16\%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.97
Intersection Signal Delay: 47.6 Intersection LOS: D
Intersection Capacity Utilization 81.4\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 210: N Rd. (CT-140)/N Rd. (CT140)

	\rangle			7	-			4			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			F		\$			个t			$\uparrow \uparrow$	
Traffic Volume (vph)	0	0	3	346	-	14	0	980	44	28	960	3
Future Volume (vph)	0	0	3	346	0	14	0	980	44	28	960	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95
Frt			0.865		0.995			0.994				
FIt Protected					0.954						0.999	
Satd. Flow (prot)	0	0	1096	0	1779	0	0	3333	0	0	3337	0
Flt Permitted					0.954						0.894	
Satd. Flow (perm)	0	0	1096	0	1779	0	0	3333	0	0	2987	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			130		33			10			1	
Link Speed (mph)		30			30			50			45	
Link Distance (t)		417			1615			1146			576	
Travel Time (s)		9.5			36.7			15.6			8.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	50\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	0\%	0\%	50\%	1\%	0\%	11\%	14\%	8\%	0\%	6\%	8\%	50\%
Adj. Flow (vph)	0	0	3	376	0	15	0	1065	48	30	1043	3
Shared Lane Trafic (\%)												
Lane Group Flow (vph)	0	0	3	0	391	0	0	1113	0	0	1076	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			26			26	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors			0	1	1			0		1	0	
Detector Template				Left						Left		
Leading Detector (ft)			0	20	25			0		20	0	
Trailing Detector (ft)			0	0	0			0		0	0	
Detector 1 Position(ft)			0	0	0			0		0	0	
Detector 1 Size(ft)			20	20	25			0		20	0	
Detector 1 Type			Extend	Cl+Ex	Cl+Ex			Cl+Ex		Cl+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)			0.0	0.0	0.0			0.0		0.0	0.0	
Detector 1 Queue (s)			0.0	0.0	0.0			0.0		0.0	0.0	
Detector 1 Delay (s)			0.0	0.0	0.0			0.0		0.0	0.0	
Turn Type			Perm	Perm	NA			NA		Perm	NA	
Protected Phases					4			2			2	
Permitted Phases			4	4						2		
Detector Phase			4	4	4							
Switch Phase												
Minimum Initial (s)			9.0	9.0	9.0			15.0		15.0	15.0	
Minimum Split (s)			13.0	13.0	13.0			20.7		20.7	20.7	
Total Split (s)			26.0	26.0	26.0			64.0		64.0	64.0	
Total Split (\%)			28.9\%	28.9\%	28.9\%			71.1\%		71.1\%	71.1\%	

Natural Cycle: 40
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.89
Intersection Signal Delay: 14.6 Intersection LOS: B
Intersection Capacity Utilization 74.9\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 211: Crow Park Rd / Scantic Rd

	\rangle						4	\dagger	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	$\stackrel{7}{ }$		\uparrow	$\stackrel{7}{ }$	\%	\uparrow		${ }^{7}$	\uparrow	
Traffic Volume (vph)	25	13	14	14	53	177	17	776	10	41	1267	30
Future Volume (vph)	25	13	14	14	53	177	17	776	10	41	1267	30
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	8	12	12	12	12	12	12
Storage Length (ft)	0		80	0		30	120		0	200		0
Storage Lanes	0		1	0		1	1		0	1		0
Taper Length (t)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00	0.97		1.00							
Fit			0.850			0.850		0.998			0.996	
Flt Protected		0.968			0.990		0.950			0.950		
Satd. Flow (prot)	0	1758	1313	0	1881	1400	1703	1736	0	1687	1801	0
Flt Permitted		0.757			0.918		0.069			0.211		
Satd. Flow (perm)	0	1368	1276	0	1741	1400	124	1736	0	375	1801	0
Right Turn on Red			No			Yes			Yes			Yes
Satd. Flow (RTOR)						192		1			2	
Link Speed (mph)		25			35			45			45	
Link Distance (ft)		551			1467			2227			2334	
Travel Time (s)		15.0			28.6			33.7			35.4	
Confl. Peds. (\#/hr)	1		1	1								
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	7\%	0\%	23\%	0\%	0\%	0\%	6\%	9\%	25\%	7\%	5\%	7\%
Adj. Flow (vph)	27	14	15	15	58	192	18	843	11	45	1377	33
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	41	15	0	73	192	18	854	0	45	1410	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.20	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1	1	1	3		1	3	
Detector Template	Left			Left								
Leading Detector (ft)	20	20	15	20	25	20	33	326		33	326	
Trailing Detector (tt)	0	0	0	0	0	0	-5	0		-5	0	
Detector 1 Position(ft)	0	0	0	0	0	0	-5	0		-5	0	
Detector 1 Size(ft)	20	20	15	20	25	20	38	6		38	6	
Detector 1 Type	Cl+Ex		Cl+Ex	Cl+Ex								
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	2.0	8.0	0.0	8.0	8.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)								144			94	
Detector 2 Size(ft)								6			6	
Detector 2 Type								Cl+Ex			Cl+Ex	
Detector 2 Channel												

Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Ideal Flow (vphpl)
Lane Width (ft)
Storage Length (ft)
Storage Lanes
Taper Length (ft)
Lane Util. Factor
Ped Bike Factor
Frt
FIt Protected
Satd. Flow (prot)
Flt Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Confl. Peds. (\#/hr)
Peak Hour Factor
Heavy Vehicles (\%)
Adj. Flow (vph)
Shared Lane Traffic (\%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(ft)
Link Offset(ft)
Crosswalk Width(ft)
Two way Left Turn Lane
Headway Factor
Turning Speed (mph)
Number of Detectors
Detector Template
Leading Detector (ft)
Trailing Detector (ft)
Detector 1 Position(ft)
Detector 1 Size(ft)
Detector 1 Type
Detector 1 Channel
Detector 1 Extend (s)
Detector 1 Queue (s)
Detector 1 Delay (s)
Detector 2 Position(ft)
Detector 2 Size(ft)
Detector 2 Type
Detector 2 Channel
Route 5 Study 04/17/2018 2040 AM Base Condition
SFM

Lane Group	$\varnothing 3$
Detector 2 Extend (s)	
Detector 3 Position(ft)	
Detector 3 Size(ft)	
Detector 3 Type	
Detector 3 Channel	
Detector 3 Extend (s)	
Turn Type	
Protected Phases	3
Permitted Phases	
Detector Phase	
Switch Phase	
Minimum Initial (s)	7.0
Minimum Split (s)	22.0
Total Split (s)	22.0
Total Split (\%)	24\%
Maximum Green (s)	18.0
Yellow Time (s)	4.0
All-Red Time (s)	0.0
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	Lag
Lead-Lag Optimize?	
Vehicle Extension (s)	3.0
Recall Mode	None
Walk Time (s)	7.0
Flash Dont Walk (s)	9.0
Pedestrian Calls (\#/hr)	10
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
90th \%ile Green (s)	16.0
90th \%ile Term Code	Ped
70th \%ile Green (s)	0.0
70th \%ile Term Code	Skip
50th \%ile Green (s)	0.0
50th \%ile Term Code	Skip
30th \%ile Green (s)	0.0
30th \%ile Term Code	Skip
10th \%ile Green (s)	0.0
10th \%ile Term Code	Skip
Stops (vph)	
Fuel Used(gal)	
CO Emissions (g/hr)	

Route 5 Study 04/17/2018 2040 AM Base Condition

Splits and Phases: 213: Tromley Rd

Lane Group $\quad \emptyset 3$
NOx Emissions (g/hr)
VOC Emissions (g/hr)
Dilemma Vehicles (\#)
Queue Length 50th (ft)
Queue Length 95th (ft)
Internal Link Dist (ft)
Turn Bay Length (ft)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		¢		\%	$\hat{\beta}$			\uparrow	F
Traffic Volume (vph)	64	6	79	7	10	7	49	941	4	7	905	102
Future Volume (vph)	64	6	79	7	10	7	49	941	4	7	905	102
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	8	12	12	12	8	12	12	8	12	8
Storage Length (ft)	0		30	0		0	50		0	0		50
Storage Lanes	0		1	0		0	1		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.960			0.999				0.850
Flt Protected		0.957			0.985		0.950					
Satd. Flow (prot)	0	1667	1386	0	1710	0	1384	1774	0	0	1754	1386
Flt Permitted		0.726			0.894		0.234				0.992	
Satd. Flow (perm)	0	1264	1386	0	1552	0	341	1774	0	0	1740	1386
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			86		8			1				55
Link Speed (mph)		25			35			45			45	
Link Distance (ft)		801			1499			4074			1892	
Travel Time (s)		21.8			29.2			61.7			28.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	10\%	0\%	1\%	0\%	0\%	17\%	13\%	7\%	0\%	50\%	8\%	1\%
Adj. Flow (vph)	70	7	86	8	11	8	53	1023	4	8	984	111

Shared Lane Traffic (\%)

Lane Group Flow (vph)	0	77	86	0	27	0	53	1027	0	0	992	111
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		10			0			8			8	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.20	1.00	1.00	1.00	1.20	1.00	1.00	1.20	1.00	1.20
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		0	0		0	0	1
Detector Template	Left		Right	Left								Right
Leading Detector (ft)	20	20	20	20	29		0	0		0	0	20
Trailing Detector (ft)	0	0	0	0	-5		0	0		0	0	0
Detector 1 Position(ft)	0	0	0	0	-5		0	0		0	0	0
Detector 1 Size(ft)	20	20	20	20	34		20	6		20	6	20
Detector 1 Type	Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases		4			4			2			2	

Permitted Phases	4		4	4		2	2	2
Detector Phase	4	4	4	4	4		2	
Switch Phase								

Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	15.0	15.0	15.0	15.0	15.0

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	9.3	9.3	9.3	9.3	9.3		22.0	22.0		22.0	22.0	22.0
Total Split (s)	15.0	15.0	15.0	15.0	15.0		75.0	75.0		75.0	75.0	75.0
Total Split (\%)	16.7\%	16.7\%	16.7\%	16.7\%	16.7\%		83.3\%	83.3\%		83.3\%	83.3\%	83.3\%
Maximum Green (s)	10.7	10.7	10.7	10.7	10.7		68.0	68.0		68.0	68.0	68.0
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		4.8	4.8		4.8	4.8	4.8
All-Red Time (s)	1.3	1.3	1.3	1.3	1.3		2.2	2.2		2.2	2.2	2.2
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)		4.3	4.3		4.3		7.0	7.0			7.0	7.0
Lead/Lag	Lag	Lag	Lag	Lag	Lag		Lead	Lead		Lead	Lead	Lead
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5	1.5	1.5	1.5	1.5		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None	None	None	None		C-Max	C-Max		C-Max	C-Max	C-Max
Act Effct Green (s)		8.6	8.6		8.6		73.3	73.3			73.3	73.3
Actuated g/C Ratio		0.10	0.10		0.10		0.81	0.81			0.81	0.81
v/c Ratio		0.64	0.41		0.17		0.19	0.71			0.70	0.10
Control Delay		61.8	14.8		30.9		4.7	17.5			3.5	0.6
Queue Delay		0.0	0.0		0.0		0.0	0.0			0.0	0.0
Total Delay		61.8	14.8		30.9		4.7	17.5			3.5	0.6
LOS		E	B		C		A	B			A	A
Approach Delay		37.0			30.9			16.8			3.2	
Approach LOS		D			C			B			A	
90th \%ile Green (s)	10.7	10.7	10.7	10.7	10.7		68.0	68.0		68.0	68.0	68.0
90th \%ile Term Code	Max	Max	Max	Max	Max		Coord	Coord		Coord	Coord	Coord
70th \%ile Green (s)	10.7	10.7	10.7	10.7	10.7		68.0	68.0		68.0	68.0	68.0
70th \%ile Term Code	Max	Max	Max	Max	Max		Coord	Coord		Coord	Coord	Coord
50th \%ile Green (s)	9.4	9.4	9.4	9.4	9.4		69.3	69.3		69.3	69.3	69.3
50th \%ile Term Code	Gap	Gap	Gap	Gap	Gap		Coord	Coord		Coord	Coord	Coord
30th \%ile Green (s)	7.4	7.4	7.4	7.4	7.4		71.3	71.3		71.3	71.3	71.3
30th \%ile Term Code	Gap	Gap	Gap	Gap	Gap		Coord	Coord		Coord	Coord	Coord
10th \%ile Green (s)	0.0	0.0	0.0	0.0	0.0		83.0	83.0		83.0	83.0	83.0
10th \%ile Term Code	Skip	Skip	Skip	Skip	Skip		Coord	Coord		Coord	Coord	Coord
Stops (vph)		67	17		19		13	610			136	5
Fuel Used(gal)		2	1		1		2	39			14	1
CO Emissions (g/hr)		114	59		40		118	2759			948	93
NOx Emissions (g/hr)		22	11		8		23	537			184	18
VOC Emissions (g/hr)		26	14		9		27	640			220	22
Dilemma Vehicles (\#)		0	0		1		0	46			19	0
Queue Length 50th (ft)		43	0		10		6	339			47	0
Queue Length 95th (ft)		\#88	42		35		m16	m396			106	m2
Internal Link Dist (ft)		721			1419			3994			1812	
Turn Bay Length (ft)			30				50					50
Base Capacity (vph)		150	240		191		277	1445			1417	1139
Starvation Cap Reductn		0	0		0		0	0			0	0
Spillback Cap Reductn		0	0		0		0	0			0	0
Storage Cap Reductn		0	0		0		0	0			0	0
Reduced v/c Ratio		0.51	0.36		0.14		0.19	0.71			0.70	0.10

Intersection Summary

Area Type: Other

Cycle Length: 90
Actuated Cycle Length: 90
Offset: 36 (40%), Referenced to phase 2:NBSB, Start of Yellow
Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.71

Intersection Signal Delay: 12.1	Intersection LOS: B
Intersection Capacity Utilization 81.7\%	ICU Level of Service D

Intersection Capacity Utilization 81.7\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 214: DD/Abbe Rd

	\rangle	\rightarrow		\downarrow			4	\uparrow	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	10.9	10.9	10.9	10.9	10.9		9.0	70.1		9.0	70.1	
Total Split (\%)	12.1\%	12.1\%	12.1\%	12.1\%	12.1\%		10.0\%	77.9\%		10.0\%	77.9\%	
Maximum Green (s)	5.8	5.8	5.8	5.8	5.8		5.0	62.8		5.0	62.8	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.0	4.8		3.0	4.8	
All-Red Time (s)	1.8	1.8	1.8	1.8	1.8		1.0	2.5		1.0	2.5	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		5.1	5.1		5.1		4.0	7.3		4.0	7.3	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5	1.5	1.5	1.5	1.5		1.5	3.0		1.5	3.0	
Recall Mode	None	None	None	None	None		None	C-Max		None	C-Max	
Act Effct Green (s)		5.5	5.5		5.5		74.6	70.3		72.2	64.9	
Actuated g/C Ratio		0.06	0.06		0.06		0.83	0.78		0.80	0.72	
v / C Ratio		0.44	0.61		0.15		0.55	0.70		0.01	1.04	
Control Delay		57.0	19.6		35.7		21.6	11.6		0.4	49.4	
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Delay		57.0	19.6		35.7		21.6	11.6		0.4	49.4	
LOS		E	B		D		C	B		A	D	
Approach Delay		27.6			35.7			12.6			49.2	
Approach LOS		C			D			B			D	
90th \%ile Green (s)	5.8	5.8	5.8	5.8	5.8		5.0	62.8		5.0	62.8	
90th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	
70th \%ile Green (s)	5.8	5.8	5.8	5.8	5.8		5.0	71.8		0.0	62.8	
70th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Skip	Coord	
50th \%ile Green (s)	5.8	5.8	5.8	5.8	5.8		5.0	71.8		0.0	62.8	
50th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Skip	Coord	
30th \%ile Green (s)	5.2	5.2	5.2	5.2	5.2		5.0	72.4		0.0	63.4	
30th \%ile Term Code	Gap	Gap	Gap	Gap	Gap		Min	Coord		Skip	Coord	
10th \%ile Green (s)	5.0	5.0	5.0	5.0	5.0		0.0	72.6		0.0	72.6	
10th \%ile Term Code	Min	Min	Min	Min	Min		Skip	Coord		Skip	Coord	
Stops (vph)		35	25		13		56	549		0	862	
Fuel Used(gal)		1	2		0		2	22		0	36	
CO Emissions (g/hr)		64	126		14		173	1563		4	2530	
NOx Emissions (g/hr)		12	25		3		34	304		1	492	
VOC Emissions (g/hr)		15	29		3		40	362		1	586	
Dilemma Vehicles (\#)		0	0		0		0	40		0	46	
Queue Length 50th (ft)		21	0		5		8	355		0	~ 862	
Queue Length 95th (ft)		\#54	\#58		25		m24	713		m0	\#330	
Internal Link Dist (ft)		1063			206			2254			1330	
Turn Bay Length (ft)			300				150			320		
Base Capacity (vph)		90	234		106		179	1374		430	1278	
Starvation Cap Reductn		0	0		0		0	0		0	0	
Spillback Cap Reductn		0	0		0		0	0		0	0	
Storage Cap Reductn		0	0		0		0	0		0	0	
Reduced v/c Ratio		0.42	0.60		0.14		0.55	0.70		0.01	1.04	
Intersection Summary												
Area Type: Cycle Length: 90	Other											

Actuated Cycle Length: 90
Offset: 71 (79%), Referenced to phase 2:SBTL and 6:NBTL, Start of Yellow
Natural Cycle: 100
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.04
Intersection Signal Delay: 32.6 Intersection LOS: C
Intersection Capacity Utilization 90.9\% ICU Level of Service E
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 215: S Water St

	4	\rightarrow		7		4	4	\dagger	p		\dagger	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\uparrow	「	${ }^{7}$	个		${ }^{7}$	F	
Traffic Volume (vph)	4	2	2	63	0	28	5	950	57	14	949	1
Future Volume (vph)	4	2	2	63	0	28	5	950	57	14	949	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	8	8	12	12	8	12	12
Storage Length (ft)	0		0	0		50	50		0	50		0
Storage Lanes	0		0	0		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.99			1.00	0.98						
Frt		0.966				0.850		0.992				
Fit Protected		0.976			0.950		0.950			0.950		
Satd. Flow (prot)	0	1780	0	0	1612	1400	1564	1744	0	1448	1776	0
Flt Permitted		0.851			0.752		0.225			0.199		
Satd. Flow (perm)	0	1549	0	0	1269	1365	371	1744	0	303	1776	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2				41		11				
Link Speed (mph)		30			35			45			45	
Link Distance (ft)		411			816			1892			693	
Travel Time (s)		9.3			15.9			28.7			10.5	
Confl. Peds. (\#/hr)	1		1	1		1						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	0\%	0\%	12\%	0\%	0\%	0\%	8\%	9\%	8\%	7\%	0\%
Adj. Flow (vph)	4	2	2	68	0	30	5	1033	62	15	1032	1
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	8	0	0	68	30	5	1095	0	15	1033	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			8			8	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.00	1.00	1.20	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1	1	0	0		0	0	
Detector Template	Left			Left		Right						
Leading Detector (ft)	20	12		20	36	20	0	0		0	0	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	12		20	36	20	20	36		20	6	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		4			4			2			2	
Permitted Phases	4			4		4	2			2		
Detector Phase	4	4		4	4	4						

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	15.0	15.0		15.0	15.0	
Minimum Split (s)	9.0	9.0		9.0	9.0	9.0	21.4	21.4		21.4	21.4	
Total Split (s)	13.0	13.0		13.0	13.0	13.0	77.0	77.0		77.0	77.0	
Total Split (\%)	14.4\%	14.4\%		14.4\%	14.4\%	14.4\%	85.6\%	85.6\%		85.6\%	85.6\%	
Maximum Green (s)	9.0	9.0		9.0	9.0	9.0	70.6	70.6		70.6	70.6	
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	4.8	4.8		4.8	4.8	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.6	1.6		1.6	1.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.0			4.0	4.0	6.4	6.4		6.4	6.4	
Lead/Lag	Lag	Lag		Lag	Lag	Lag	Lead	Lead		Lead	Lead	
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5	1.5		1.5	1.5	1.5	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	C-Max	C-Max		C-Max	C-Max	
Act Effct Green (s)		7.8			7.8	7.8	74.9	74.9		74.9	74.9	
Actuated g/C Ratio		0.09			0.09	0.09	0.83	0.83		0.83	0.83	
v/c Ratio		0.06			0.62	0.19	0.02	0.75		0.06	0.70	
Control Delay		33.9			64.2	11.9	3.2	8.9		0.5	2.0	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		33.9			64.2	11.9	3.2	8.9		0.5	2.0	
LOS		C			E	B	A	A		A	A	
Approach Delay		33.9			48.2			8.9			2.0	
Approach LOS		C			D			A			A	
90th \%ile Green (s)	9.0	9.0		9.0	9.0	9.0	70.6	70.6		70.6	70.6	
90th \%ile Term Code	Max	Max		Max	Max	Max	Coord	Coord		Coord	Coord	
70th \%ile Green (s)	9.0	9.0		9.0	9.0	9.0	70.6	70.6		70.6	70.6	
70th \%ile Term Code	Max	Max		Max	Max	Max	Coord	Coord		Coord	Coord	
50th \%ile Green (s)	8.9	8.9		8.9	8.9	8.9	70.7	70.7		70.7	70.7	
50th \%ile Term Code	Gap	Gap		Gap	Gap	Gap	Coord	Coord		Coord	Coord	
30th \%ile Green (s)	7.0	7.0		7.0	7.0	7.0	72.6	72.6		72.6	72.6	
30th \%ile Term Code	Gap	Gap		Gap	Gap	Gap	Coord	Coord		Coord	Coord	
10th \%ile Green (s)	0.0	0.0		0.0	0.0	0.0	83.6	83.6		83.6	83.6	
10th \%ile Term Code	Skip	Skip		Skip	Skip	Skip	Coord	Coord		Coord	Coord	
Stops (vph)		8			58	7	2	434		0	14	
Fuel Used(gal)		0			2	0	0	20		0	9	
CO Emissions (g/hr)		8			114	20	6	1369		8	604	
NOx Emissions (g/hr)		2			22	4	1	266		2	118	
VOC Emissions (g/hr)		2			26	5	1	317		2	140	
Dilemma Vehicles (\#)		0			3	0	0	66		0	22	
Queue Length 50th (ft)		3			38	0	0	119		0	5	
Queue Length 95th (ft)		17			\#90	20	m1	567		m0	16	
Internal Link Dist (ft)		331			736			1812			613	
Turn Bay Length (ft)						50	50			50		
Base Capacity (vph)		156			126	173	309	1453		252	1478	
Starvation Cap Reductn		0			0	0	0	0		0	0	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.05			0.54	0.17	0.02	0.75		0.06	0.70	

Intersection Summary

Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 90
Offset: 14 (16\%), Referenced to phase 2:NBSB, Start of Yellow
Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.75
Intersection Signal Delay: 7.5 Intersection LOS: A
Intersection Capacity Utilization 73.8\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 216: Stoughton Rd

	4	\rightarrow	\checkmark					4			$\frac{1}{7}$	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow		${ }^{7}$	4						\uparrow	「
Traffic Volume (vph)	0	247	310	386	672	0	0	0	0	191	0	206
Future Volume (vph)	0	247	310	386	672	0	0	0	0	191	0	206
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	0		0	0		50
Storage Lanes	0		0	1		0	0		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.925										0.850
Flt Protected				0.950							0.950	
Satd. Flow (prot)	0	1723	0	1770	1863	0	0	0	0	0	1770	1583
Flt Permitted				0.250							0.950	
Satd. Flow (perm)	0	1723	0	466	1863	0	0	0	0	0	1770	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		86										154
Link Speed (mph)		30			35			30			30	
Link Distance (ft)		684			478			428			360	
Travel Time (s)		15.5			9.3			9.7			8.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	268	337	420	730	0	0	0	0	208	0	224
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	605	0	420	730	0	0	0	0	0	208	224
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors		0		1	0					1	1	1
Detector Template										Left		
Leading Detector (ft)		0		36	0					20	15	15
Trailing Detector (ft)		0		0	0					0	0	0
Detector 1 Position(ft)		0		0	0					0	0	0
Detector 1 Size(ft)		6		36	6					20	15	15
Detector 1 Type		$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$					$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel												
Detector 1 Extend (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Queue (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Delay (s)		0.0		0.0	0.0					0.0	6.0	6.0
Turn Type		NA		D.P+P	NA					Split	NA	Prot
Protected Phases		2		3	32					4	4	4
Permitted Phases				2								
Detector Phase				3						4	4	4
Switch Phase												
Minimum Initial (s)		20.0		5.0						5.0	5.0	5.0
Minimum Split (s)		25.5		9.9						10.3	10.3	10.3
Total Split (s)		43.0		27.0						20.0	20.0	20.0

				7			4	\dagger			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (\%)		47.8\%		30.0\%						22.2\%	22.2\%	22.2\%
Maximum Green (s)		37.5		22.1						14.7	14.7	14.7
Yellow Time (s)		4.5		3.9						3.0	3.0	3.0
All-Red Time (s)		1.0		1.0						2.3	2.3	2.3
Lost Time Adjust (s)		0.0		0.0							0.0	0.0
Total Lost Time (s)		5.5		4.9							5.3	5.3
Lead/Lag		Lead		Lag								
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0		2.0						3.0	3.0	3.0
Recall Mode		C-Max		None						None	None	None
Act Effft Green (s)		43.0		60.8	65.7						14.1	14.1
Actuated g/C Ratio		0.48		0.68	0.73						0.16	0.16
v/c Ratio		0.70		0.75	0.54						0.75	0.59
Control Delay		22.6		16.8	7.1						53.9	19.1
Queue Delay		0.0		0.2	0.1						0.0	0.0
Total Delay		22.6		17.0	7.1						53.9	19.1
LOS		C		B	A						D	B
Approach Delay		22.6			10.7						35.8	
Approach LOS		C			B						D	
90th \%ile Green (s)		37.5		22.1						14.7	14.7	14.7
90th \%ile Term Code		Coord		Max						Max	Max	Max
70th \%ile Green (s)		37.5		21.2						15.6	15.6	15.6
70th \%ile Term Code		Coord		Gap						Max	Max	Max
50th \%ile Green (s)		40.1		18.1						16.1	16.1	16.1
50th \%ile Term Code		Coord		Gap						Gap	Gap	Gap
30th \%ile Green (s)		45.7		14.8						13.8	13.8	13.8
30th \%ile Term Code		Coord		Gap						Gap	Gap	Gap
10th \%ile Green (s)		54.1		9.8						10.4	10.4	10.4
10th \%ile Term Code		Coord		Gap						Gap	Gap	Gap
Stops (vph)		382		220	177						173	70
Fuel Used(gal)		8		4	5						4	2
CO Emissions (g/hr)		534		301	323						251	123
NOX Emissions (g/hr)		104		59	63						49	24
VOC Emissions (g/hr)		124		70	75						58	29
Dilemma Vehicles (\#)		0		0	77						0	0
Queue Length 50th (ft)		238		68	118						111	35
Queue Length 95th (ft)		\#406		71	114						\#212	107
Internal Link Dist (ft)		604			398			348			280	
Turn Bay Length (tt)												50
Base Capacity (vph)		868		660	1359						298	394
Starvation Cap Reductn		0		23	63						0	0
Spillback Cap Reductn		0		0	0						0	0
Storage Cap Reductn		0		0	0						0	0
Reduced v/c Ratio		0.70		0.66	0.56						0.70	0.57

Intersection Summary

Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 90

Offset: $0(0 \%)$, Referenced to phase 2:EBWB, Start of Yellow
Natural Cycle: 70
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.75
Intersection Signal Delay: $19.0 \quad$ Intersection LOS: B
Intersection Capacity Utilization 77.0\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 219: Bridge St (CT-140)

	4	\rightarrow	7	7			4	4	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		* \uparrow			44			4	Tr			
Traffic Volume (vph)	164	274	0	0	946	234	112	0	368	0	0	0
Future Volume (vph)	164	274	0	0	946	234	112	0	368	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	250		300	0		0
Storage Lanes	0		0	0		0	1		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.95	0.95	1.00	1.00	0.95	0.95	1.00	1.00	0.88	1.00	1.00	1.00
Frt					0.970				0.850			
Flt Protected		0.982						0.950				
Satd. Flow (prot)	0	3476	0	0	3433	0	0	1770	2787	0	0	0
Flt Permitted		0.535						0.950				
Satd. Flow (perm)	0	1893	0	0	3433	0	0	1770	2787	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					53				400			
Link Speed (mph)		35			35			30			30	
Link Distance (ft)		478			323			585			321	
Travel Time (s)		9.3			6.3			13.3			7.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	178	298	0	0	1028	254	122	0	400	0	0	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	476	0	0	1282	0	0	122	400	0	0	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			6			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2			0		1	1	1			
Detector Template	Left	Thru					Left					
Leading Detector (ft)	20	100			0		20	6	21			
Trailing Detector (ft)	0	0			0		0	0	-3			
Detector 1 Position(ft)	0	0			0		0	0	-3			
Detector 1 Size(ft)	20	6			6		20	6	24			
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Detector 1 Queue (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Detector 1 Delay (s)	0.0	0.0			0.0		0.0	0.0	9.0			
Detector 2 Position(ft)		94										
Detector 2 Size(ft)		6										
Detector 2 Type		Cl+Ex										
Detector 2 Channel												
Detector 2 Extend (s)		0.0										
Turn Type	custom	NA			NA		Split	NA	custom			
Protected Phases	3	23			25		4	4	45			
Permitted Phases	2											

Lane Group $\quad \varnothing 2 \quad \varnothing 5$
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Ideal Flow (vphpl)
Storage Length (ft)
Storage Lanes
Taper Length (ft)
Lane Util. Factor
Frt
Flt Protected
Satd. Flow (prot)
Flt Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Peak Hour Factor
Adj. Flow (vph)
Shared Lane Traffic (\%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(ft)
Link Offset(ft)
Crosswalk Width(ft)
Two way Left Turn Lane
Headway Factor
Turning Speed (mph)
Number of Detectors
Detector Template
Leading Detector (ft)
SFM Study 04/17/2018 2040 AM Base Condition
Trailing Detector (ft)
Detector 1 Position(ft)
Detector 1 Size(ft)
Detector 1 Type
Detector 1 Channel
Detector 1 Extend (s)
Detector 1 Queue (s)
Detector 1 Delay (s)
Detector 2 Position(ft)
Detector 2 Size(ft)
Detector 2 Type
Detector 2 Channel
Detector 2 Extend (s)
Turn Type
Proted Phases

	4							4	\%		\downarrow	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	3	3					4	4	5			
Switch Phase												
Minimum Initial (s)	5.0						7.0	7.0				
Minimum Split (s)	10.4						12.1	12.1				
Total Split (s)	16.4						18.4	18.4				
Total Split (\%)	18.2\%						20.4\%	20.4\%				
Maximum Green (s)	11.0						13.3	13.3				
Yellow Time (s)	4.1						3.0	3.0				
All-Red Time (s)	1.3						2.1	2.1				
Lost Time Adjust (s)								0.0				
Total Lost Time (s)								5.1				
Lead/Lag	Lag						Lead	Lead				
Lead-Lag Optimize?												
Vehicle Extension (s)	2.5						3.0	3.0				
Recall Mode	Max						None	None				
Act Effct Green (s)		50.3			51.1			10.9	21.6			
Actuated g/C Ratio		0.56			0.57			0.12	0.24			
v / c Ratio		0.39			0.65			0.57	0.41			
Control Delay		13.9			8.2			47.4	4.2			
Queue Delay		0.0			0.0			0.0	0.0			
Total Delay		13.9			8.2			47.4	4.2			
LOS		B			A			D	A			
Approach Delay		13.9			8.2			14.3				
Approach LOS		B			A			B				
90th \%ile Green (s)	11.0						13.3	13.3				
90th \%ile Term Code	MaxR						Max	Max				
70th \%ile Green (s)	11.0						13.3	13.3				
70th \%ile Term Code	MaxR						Max	Max				
50th \%ile Green (s)	11.0						11.5	11.5				
50th \%ile Term Code	MaxR						Gap	Gap				
30th \%ile Green (s)	11.0						9.6	9.6				
30th \%ile Term Code	MaxR						Gap	Gap				
10th \%ile Green (s)	11.0						7.0	7.0				
10th \%ile Term Code	MaxR						Min	Min				
Stops (vph)		263			440			103	33			
Fuel Used(gal)		5			8			2	2			
CO Emissions (g/hr)		330			561			151	152			
NOx Emissions (g/hr)		64			109			29	30			
VOC Emissions (g/hr)		77			130			35	35			
Dilemma Vehicles (\#)		75			78			0	0			
Queue Length 50th (ft)		67			95			66	0			
Queue Length 95th (ft)		128			m102			119	36			
Internal Link Dist (ft)		398			243			505			241	
Turn Bay Length (ft)									300			
Base Capacity (vph)		1231			1970			261	1018			
Starvation Cap Reductn		0			0			0	0			
Spillback Cap Reductn		0			0			0	0			
Storage Cap Reductn		0			0			0	0			
Reduced v/c Ratio		0.39			0.65			0.47	0.39			
Route 5 Study 04/17/2018 2040 AM Base ConditionSFM										Synchro 10 ReportPage 43		

Lane Group	$\emptyset 2$	$\varnothing 5$
Detector Phase		
Switch Phase		
Minimum Initial (s)	15.0	5.0
Minimum Split (s)	21.5	10.7
Total Split (s)	42.8	12.4
Total Split (\%)	48\%	14\%
Maximum Green (s)	36.3	6.7
Yellow Time (s)	4.5	4.5
All-Red Time (s)	2.0	1.2
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lag
Lead-Lag Optimize?		
Vehicle Extension (s)	3.0	1.5
Recall Mode	C-Max	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
90th \%ile Green (s)	38.0	5.0
90th \%ile Term Code	Coord	Min
70th \%ile Green (s)	38.0	5.0
70th \%ile Term Code	Coord	Min
50 th \%ile Green (s)	39.8	5.0
50th \%ile Term Code	Coord	Min
30th \%ile Green (s)	41.7	5.0
30th \%ile Term Code	Coord	Min
10th \%ile Green (s)	44.3	5.0
10th \%ile Term Code	Coord	Min
Stops (vph)		
Fuel Used(gal)		
CO Emissions (g/hr)		
NOx Emissions (g/hr)		
VOC Emissions (g/hr)		
Dilemma Vehicles (\#)		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		

Route 5 Study 04/17/2018 2040 AM Base Condition
Synchro 10 Report SFM

Intersection Summary \quad Other
Area Type:
Cycle Length: $90 \quad$ Intersection LOS: B
Actuated Cycle Length: 90
Offset: 32 (36\%), Referenced to phase 2:EBWB, Start of Yellow
Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.65 Intersection Signal Delay: 10.8 Intersection Capacity Utilization 67.4% Analysis Period (min) 15 molume for 95 th percentile queue is metered by upstream signal.

Splits and Phases: 220: Bridge St (CT-140)

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¢				\uparrow	F	4t			* ${ }^{\text {¢ }}$		
Traffic Volume (vph)	6	41	4	6	47	10	16	862	104	184	954	23
Future Volume (vph)	6	41	4	6	47	10	16	862	104	184	954	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	0		0	200		0
Storage Lanes	0		0	0		1	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Frt	0.990			0.850			0.984		0.997			
Flt Protected	0.994			0.994			0.999		0.992			
Satd. Flow (prot)	0	1572	0	0	1774	1482	0	3278	0	0	3278	0
Flt Permitted	0.945			0.969			0.922		0.607			
Satd. Flow (perm)	0	1495	0	0	1729	1482	0	3026	0	0	2006	0
Right Turn on Red			Yes			Yes			Yes			Yes

Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	56	0	0	58	11	0	1067	0	0	1262	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(tt)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1			1	1	1	1					

	Left		Left		Right	Left		Left	
Detector Template	20	15	20	20	20	20	0	20	0
Leading Detector (ft)	0	0	0	0	0	0	0	0	0
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	15	20	20	20	20	6	20	6
Detector 1 Size(ft)	20	Cl+Ex							
Cl+Ex									

Detector 1 Channel

Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	NA
Protected Phases		4		4			2	2	2
Permitted Phases	4		4		4	2			
Detector Phase	4	4	4	4	4				
Switch Phase									15.0
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	15.0	15.0	15.0	
Minimum Split (s)	11.7	11.7	11.7	11.7	11.7	21.8	21.8	21.8	21.8

| Lane Group | | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | SBR

Lead/Lag
Lead-Lag Optimize?

Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	C-Max	C-Max	C-Max	C-Max
Act Effct Green (s)		7.2		7.2	7.2		75.0		
Actuated g/C Ratio		0.08		0.08	0.08	0.83			
v/c Ratio	0.46		0.42	0.07	0.42	0.83			
Control Delay	50.5		49.2	0.8	2.9	0.75			
Queue Delay	0.0		0.0	0.0	0.0	3.9			
Total Delay		50.5		49.2	0.8	2.9	0.0		

LOS		D		D	A		A		A
Approach Delay		50.5		41.5			2.9		3.9
Approach LOS		D		D			A		A
90th \%ile Green (s)	7.3	7.3	7.3	7.3	7.3	71.2	71.2	71.2	71.2
90th \%ile Term Code	Max	Max	Max	Max	Max	Coord	Coord	Coord	Coord
70th \%ile Green (s)	7.3	7.3	7.3	7.3	7.3	71.2	71.2	71.2	71.2
70th \%ile Term Code	Max	Max	Max	Max	Max	Coord	Coord	Coord	Coord
50th \%ile Green (s)	7.3	7.3	7.3	7.3	7.3	71.2	71.2	71.2	71.2
50th \%ile Term Code	Max	Max	Max	Max	Max	Coord	Coord	Coord	Coord
30th \%ile Green (s)	7.0	7.0	7.0	7.0	7.0	71.5	71.5	71.5	71.5
30th \%ile Term Code	Min	Min	Min	Min	Min	Coord	Coord	Coord	Coord
10th \%ile Green (s)	0.0	0.0	0.0	0.0	0.0	83.2	83.2	83.2	83.2
10th \%ile Term Code				kip					

Stops (vph)	48	50	0	204	11
Fuel Used(gal)	1	1	0	380	
CO Emissions (g/hr)	65	85	7	762	18
NOx Emissions (g/hr)	13	17	1	148	1275
VOC Emissions (ghr)	15	20	2	176	248
Dilemma Vehicles (\#)	0	0	0	60	295
Queue Length 50th (ft)	29	32	0	38	20
Queue Length 95th (ft)	68	71	0	146	6
Internal Link Dist (ft)	404			447	36
Turn Bay Length ((tt)		140	162	2530	477
Base Capacity (vph)	124	0	0	0	
Starvation Cap Reductn	0	0	0	0	1673
Spilllack Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0.41	0.07	0.42	0
Reduced v/c Ratio					0
					0.75

Intersection Summary

Area Type: Other
Cycle Length: 90

Actuated Cycle Length: 90
Offset: 83 (92\%), Referenced to phase 2:NBSB, Start of Yellow
Natural Cycle: 65
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.75
Intersection Signal Delay: 5.6 Intersection LOS: A
Intersection Capacity Utilization 82.8\% ICU Level of Service E
Analysis Period (min) 15
Splits and Phases: 222: Southern Auto Auction

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		¢		\%	$\hat{\beta}$		\%	\uparrow	$\overline{7}$
Traffic Volume (vph)	53	0	111	10	5	10	24	303	0	10	538	36
Future Volume (vph)	53	0	111	10	5	10	24	303	0	10	538	36
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	300		0	0		400
Storage Lanes	0		1	0		0	1		0	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00
Ped Bike Factor							1.00					

Link Speed (mph)		25			30			45			45	
Link Distance (f)		532			223			1555			682	
Travel Time (s)		14.5			5.1			23.6			10.3	
Confl. Peds. (\#/hr)							1					
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	29\%	2\%	0\%	2\%	2\%	2\%	50\%	8\%	2\%	2\%	9\%	27\%
Adj. Flow (vph)	58	0	121	11	5	11	26	329	0	11	585	39
Shared Lane Traffic (\%)										10\%		
Lane Group Flow (vph)	0	58	121	0	27	0	26	329	0	10	586	39
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(tt)		5			0			24			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	

| Two way Left Turn Lane | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Detector 1 Channel

Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94	6	287	6	277	
Detector 2 Size(ft)		6			Cl+Ex		Cl+Ex	6		
Detector 2 Type		Cl+Ex						Cl+Ex		

Detector 2 Extend (s)	0.0	0.0	0.0	0.0

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA	Prot	Perm	NA	D.P+P	NA	Perm	NA	Perm		
Protected Phases		4	4		4	1	12		2	2	2	
Permitted Phases	4			4		2			2	2	2	
Detector Phase	4	4	4	4	4	1	2		2	2		

Switch Phase									
Minimum Initial (s)	4.5	4.5	4.5	4.5	4.5	4.5	15.0	15.0	15.0
Minimum Split (s)	9.0	9.0	9.0	9.0	9.0	9.0	21.0	21.0	21.0
Total Split (s)	17.0	17.0	17.0	17.0	17.0	11.0	62.0	62.0	62.0
Total Split (\%)	18.9\%	18.9\%	18.9\%	18.9\%	18.9\%	12.2\%	68.9\%	68.9\%	68.9\%

| Maximum Green (s) | 13.0 | 13.0 | 13.0 | 13.0 | 13.0 | 7.0 | 56.0 | 56.0 | 56.0 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Yellow Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 4.8 | 4.8 | 4.8 |
| All-Red Time (s) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.2 | 1.2 | 1.2 |
| Lost Time Adjust (s) | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Lost Time (s) | | 4.0 | 4.0 | | 4.0 | 4.0 | 6.0 | 6.0 | 6.0 |

Lead/Lag						Lead		Lag	Lag	Lag
Lead-Lag Optimize?										
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		

Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None		C-Min	C-Min	C-Min
Act Effct Green (s)		10.2	10.2		10.2	70.2	71.8	65.6	65.6	65.6
Actuated g/C Ratio		0.11	0.11		0.11	0.78	0.80	0.73	0.73	0.73
v / c Ratio		0.47	0.42		0.15	0.06	0.23	0.01	0.49	0.04
Control Delay		48.8	11.4		25.6	1.4	1.1	9.8	12.4	4.2
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		48.8	11.4		25.6	1.4	1.1	9.8	12.4	4.2
LOS		D	B		C	A	A	A	B	A
Approach Delay		23.5			25.6		1.1		11.9	

Approach Delay	23.5			25.6		1.1		11.9		
Approach LOS		C			C		A		B	
90th \%ile Green (s)	15.0	15.0	15.0	15.0	15.0	6.8		54.2	54.2	54.2
90th \%ile Term Code	Gap	Gap	Gap	Gap	Gap	Gap		Coord	Coord	Coord
70th \%ile Green (s)	12.1	12.1	12.1	12.1	12.1	6.2		57.7	57.7	57.7
70th \%ile Term Code	Gap	Gap	Gap	Gap	Gap	Gap		Coord	Coord	Coord
50th \%ile Green (s)	10.1	10.1	10.1	10.1	10.1	0.0		69.9	69.9	69.9
50th \%ile Term Code	Gap	Gap	Gap	Gap	Gap	Skip		Coord	Coord	Coord
30th \%ile Green (s)	8.1	8.1	8.1	8.1	8.1	0.0		71.9	71.9	71.9
30th \%ile Term Code	Gap	Gap	Gap	Gap	Gap	Skip		Coord	Coord	Coord
10th \%ile Green (s)	5.5	5.5	5.5	5.5	5.5	0.0		74.5	74.5	74.5
10th \%ile Term Code	Gap	Gap	Gap	Gap	Gap	Skip		Coord	Coord	Coord
Stops (vph)		48	20		18	2	13	5	274	11
Fuel Used(gal)		1	1		0	0	3	0	7	0
CO Emissions (g/hr)		66	59		19	19	230	8	500	23
NOX Emissions (g/hr)		13	11		4	4	45	2	97	4
VOC Emissions (g/hr)		15	14		4	4	53	2	116	5
Dilemma Vehicles (\#)		0	0		0	0	11	0	23	0
Queue Length 50th (ft)		31	0		8	0	4	1	72	0
Queue Length 95th (ft)		67	46		31	4	26	m10	389	12
Internal Link Dist (ft)		452			143		1475		602	
Turn Bay Length (ft)						300				400
Base Capacity (vph)		162	343		241	429	1411	729	1214	949
Starvation Cap Reductn		0	0		0	0	0	0	0	0

[^5]Synchro 10 Report
Page 50

						4	\uparrow	1		\downarrow	\downarrow
Lane Group EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Spillback Cap Reductn	0	0		0		0	0		0	0	0
Storage Cap Reductn	0	0		0		0	0		0	0	0
Reduced v/c Ratio	0.36	0.35		0.11		0.06	0.23		0.01	0.48	0.04
Intersection Summary											
Area Type: Other	Other										
Cycle Length: 90											
Actuated Cycle Length: 90											
Offset: 68 (76\%), Referenced to phase 2:NBSB, Start of Yellow											
Natural Cycle: 55											
Control Type: Actuated-Coordinated											
Maximum v/c Ratio: 0.49											
Intersection Signal Delay: 10.7				Intersection LOS: B							
Intersection Capacity Utilization 43.9\%Analysis Period (min) 15				ICU Level of Service A							
				Analysis Period (min) 15							

Splits and Phases: 225: MMCT Casino

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	7		\uparrow	「	\%	$\hat{\beta}$		${ }^{7}$	\uparrow	F
Traffic Volume (vph)	8	0	32	7	0	8	22	311	43	11	611	27
Future Volume (vph)	8	0	32	7	0	8	22	311	43	11	611	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	12	12	12	12	12	12	12	12	12	12	12
Storage Length (ft)	0		0	0		50	360		0	0		370
Storage Lanes	0		1	0		1	1		0	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor			0.98									
Frt			0.850			0.850		0.982				0.850
Flt Protected		0.950			0.950		0.950			0.950		
Satd. Flow (prot)	0	1543	1615	0	1583	1615	1583	1737	0	1805	1792	1482
Flt Permitted							0.387			0.534		
Satd. Flow (perm)	0	1624	1577	0	1667	1615	645	1737	0	1015	1792	1482
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			63			112		39				61
Link Speed (mph)		25			25			45			45	
Link Distance (ft)		626			337			1217			1555	
Travel Time (s)		17.1			9.2			18.4			23.6	

Confl. Bikes (\#/hr)	1											
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	17%	0%	0%	14%	0%	0%	14%	8%	3%	0%	6%	9%
Adj. Flow (vph)	9	0	35	8	0	9	24	338	47	12	664	29

| Shared Lane Traffic (\%) | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Lane Group Flow (vph) | 0 | 9 | 35 | 0 | 8 | 9 | 24 | 385 | 0 | 12 | 664 |
| Enter Blocked Intersection | No |
| Lane Alignment | Left | Left | Right | Left | Left | Right | Left | Left | Right | Left | Left |
| Median Width(ft) | | 5 | | | 0 | | | 24 | | 0 | |
| Link Offset(ft) | | 0 | | | 0 | | | 0 | | 0 | |
| Crosswalk Width(ft) | | 16 | | | 16 | | | 16 | | 6 | |

Two way Left Turn Lane

Headway Factor	1.04	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1	1	1	2		1	2	2
Detector Template	Left			Left						Left		
Leading Detector (ft)	20	29	29	20	14	14	24	366		20	366	366
Trailing Detector (tt)	0	-5	-5	0	-10	-10	-10	180		0	180	180
Detector 1 Position(f)	0	-5	-5	0	-10	-10	-10	180		0	180	180
Detector 1 Size(ft)	20	34	34	20	24	24	34	6		20	6	6
Detector 1 Type	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex							
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 2 Position(ft)								360			360	360
Detector 2 Size(ft)								6			6	6
Detector 2 Type								Cl+Ex			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$

Detector 2 Channel

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Extend（s）								0.0		0.0	0.0	
Turn Type	Perm	NA	pm＋ov	Perm	NA	Perm	D．P＋P	NA	Perm	NA	Perm	
Protected Phases		4	1		4		1	12		2	2	2
Permitted Phases	4		4	4		4	2			2		2
Detector Phase	4	4	4	4	4	4	1	2		2	2	2

Switch Phase

Minimum Initial（s）	4.5	4.5	4.5	4.5	4.5	4.5	4.5	15.0	15.0	15.0
Minimum Split（s）	9.0	9.0	9.0	9.0	9.0	9.0	9.0	23.4	23.4	23.4
Total Split（s）	9.0	9.0	9.0	9.0	9.0	9.0	9.0	72.0	72.0	72.0
Total Split（\％）	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	80.0%	80.0%	80.0%
Maximum Green（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	63.8	63.8	63.8
Yellow Time（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.8	4.8	4.8
All－Red Time（s）	1.0	1.0	1.0	1.0	1.0	1.0	1.0	3.4	3.4	3.4
Lost Time Adjust（s）		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）		4.0	4.0		4.0	4.0	4.0	0.0	8.2	8.2
Lead／Lag			Lead				Lead	Lag	Lag	Lag

Lead－Lag Optimize？

Vehicle Extension（s）	1.5	1.5	1.5	1.5	1.5	1.5	1.5		2.5	2.5	2.5
Recall Mode	None		C－Min	C－Min	C－Min						
Act Effct Green（s）		5.1	6.9		5.1	5.1	78.7	81.9	76.0	76.0	76.0
Actuated g／C Ratio		0.06	0.08		0.06	0.06	0.87	0.91	0.84	0.84	0.84
v／c Ratio		0.10	0.20		0.09	0.05	0.04	0.24	0.01	0.44	0.02
Control Delay		42.2	5.8		41.7	0.5	2.0	2.8	1.6	1.9	0.1
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		42.2	5.8		41.7	0.5	2.0	2.8	1.6	1.9	0.1
LOS		D	A		D	A	A	A	A	A	A
Approach Delay		13.2			19.9			2.8		1.8	
Approach LOS		B			B			A		A	
90th \％\％ile Green（s）		3	47		63		47			62.8	

硣	6．	6．		6．	仡	6．	崖		62.8	62.8	
90th \％ile Term Code	Gap		Coord	Coord	Coord						
70th \％ile Green（s）	5.3	5.3	4.5	5.3	5.3	5.3	4.5		64.0	64.0	64.0
70th \％ile Term Code	Gap	Gap	Min	Gap	Gap	Gap	Min		Coord	Coord	Coord
50th \％ile Green（s）	4.7	4.7	0.0	4.7	4.7	4.7	0.0		73.1	73.1	73.1
50th \％ile Term Code	Gap	Gap	Skip	Gap	Gap	Gap	Skip		Coord	Coord	Coord
30th \％ile Green（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0		81.8	81.8	81.8
30th \％ile Term Code	Skip		Coord	Coord	Coord						
10th \％ile Green（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0		81.8	81.8	81.8
10th \％ile Term Code	Skip		Coord	Coord	Coord						
Stops（vph）		10	3		9	0	6	90	1	39	0
Fuel Used（gal）		0	0		0	0	0	5	0	7	0
CO Emissions（g／hr）		10	15		8	2	22	352	9	481	19
NOX Emissions（g／hr）		2	3		2	0	4	69	2	94	4
VOC Emissions（g／hr）		2	4		2	0	5	82	2	112	4
Dilemma Vehicles（\＃）		0	0		0	0	0	7	0	8	0
Queue Length 50th（tt）		5	0		4	0	1	12	0	15	0
Queue Length 95th（ft）		20	12		18	0	12	170	m2	63	m0
Internal Link Dist（ft）		546			257			1137		1475	
Turn Bay Length（ ft ）						50	360				370
Base Capacity（vph）		96	184		98	200	617	1589	859	1517	1264

						4	4	7		\downarrow	\checkmark
Lane Group EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Starvation Cap Reductn	0	0		0	0	0	0		0	0	0
Spillback Cap Reductn	0	0		0	0	0	0		0	0	0
Storage Cap Reductn	0	0		0	0	0	0		0	0	0
Reduced v/c Ratio	0.09	0.19		0.08	0.04	0.04	0.24		0.01	0.44	0.02
Intersection Summary											
Area Type: Other											
Cycle Length: 90											
Actuated Cycle Length: 90											
Offset: 6 (7\%), Referenced to phase 2:NBSB, Start of Yellow											
Natural Cycle: 55											
Control Type: Actuated-Coordinated											
Maximum v/c Ratio: 0.44											
Intersection Signal Delay: 2.8				Intersection LOS: A							
Intersection Capacity Utilization 53.2\%				ICU Level of Service A							
Analysis Period (min) 15											
m Volume for 95 th percentile queue is	metere	by upst	am sign								

Splits and Phases: 226: Big Y/Ethos

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow		\%	\uparrow		\%	个4	「	\%	¢	
Traffic Volume (vph)	0	0	5	74	0	42	17	334	77	47	596	7
Future Volume (vph)	0	0	5	74	0	42	17	334	77	47	596	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	12	12	12	12	12	12	12	12	12	12	12
Storage Length (t)	0		0	0		0	110		140	250		0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	1.00	1.00
Ped Bike Factor		0.97										
Frt		0.850			0.850				0.850		0.998	
Flt Protected				0.950			0.950			0.950		
Satd. Flow (prot)	1837	1573	0	1736	1568	0	1805	3312	1524	1770	1774	0
FIt Permitted				0.976			0.361			0.525		
Satd. Flow (perm)	1837	1573	0	1783	1568	0	686	3312	1524	978	1774	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		366			600				96		1	
Link Speed (mph)		25			25			45			45	
Link Distance (ft)		349			546			571			400	
Travel Time (s)		9.5			14.9			8.7			6.1	
Confl. Bikes (\#/hr)			1									
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	0\%	0\%	4\%	0\%	3\%	0\%	9\%	6\%	2\%	7\%	0\%
Adj. Flow (vph)	0	0	5	80	0	46	18	363	84	51	648	8

| Shared Lane Traffic (\%) | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Lane Group Flow (vph) | 0 | 5 | 0 | 80 | 46 | 0 | 18 | 363 | 84 | 51 | 656 | 0 |
| Enter Blocked Intersection | No |
| Lane Alignment | Left | Left | Right |
| Median Width(ft) | | 12 | | | 12 | | | 12 | | | 12 | |
| Link Offset(ft) | | 0 | | | 0 | | | 0 | | | 0 | |
| Crosswalk Width(ft) | | 16 | | | 16 | | | 16 | | | 16 | |

Two way Left Turn Lane	1.04	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	15		9	15		9	15		9	15		9
Turning Speed (mph)	1	1		1	1		1	2	1	1	2	
Number of Detectors	1											

Detector Template							Right		Thru
Leading Detector (ft)	30	30	33	46	48	356	20	38	100
Trailing Detector (ft)	-5	-5	-5	0	0	165	0	0	0
Detector 1 Position(ft)	-5	-5	-5	0	0	165	0	0	0
Detector 1 Size(ft)	35	35	38	46	48	6	20	38	6
Detector 1 Type	Cl+Ex	Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel									
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)						350			94
Detector 2 Size(ft)						6			6
Detector 2 Type						Cl+Ex			Cl+Ex

Detector 2 Channel

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Extend (s)								0.0			0.0	
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8			2		2	6		
Detector Phase	7	4		3	8		5	2	2	1	6	
Switch Phase												
Minimum Initial (s)	3.6	5.0		3.6	5.0		3.6	13.1	13.1	4.1	13.1	
Minimum Split (s)	8.1	9.7		8.1	9.7		8.1	24.3	24.3	8.1	21.3	
Total Split (s)	8.1	10.0		10.0	11.9		8.1	61.8	61.8	8.2	61.9	
Total Split (\%)	9.0\%	11.1\%		11.1\%	13.2\%		9.0\%	68.7\%	68.7\%	9.1\%	68.8\%	
Maximum Green (s)	5.0	5.3		6.9	7.2		5.0	55.5	55.5	5.1	55.6	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	4.5	4.5	3.0	4.5	
All-Red Time (s)	0.1	1.7		0.1	1.7		0.1	1.8	1.8	0.1	1.8	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.1	4.7		3.1	4.7		3.1	6.3	6.3	3.1	6.3	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.5	2.5	2.0	2.5	
Recall Mode	None	None		None	None		None	C-Min	C-Min	None	C-Min	
Act Effct Green (s)		5.0		9.8	8.5		73.4	68.5	68.5	74.6	70.4	
Actuated g/C Ratio		0.06		0.11	0.09		0.82	0.76	0.76	0.83	0.78	
v / c Ratio		0.01		0.41	0.07		0.03	0.14	0.07	0.06	0.47	
Control Delay		0.0		41.9	0.2		1.6	3.5	1.6	0.6	3.0	
Queue Delay		0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay		0.0		41.9	0.2		1.6	3.5	1.6	0.6	3.0	
LOS		A		D	A		A	A	A	A	A	
Approach Delay					26.7			3.1			2.8	
Approach LOS					C			A			A	
90th \%ile Green (s)	0.0	5.0		9.8	17.9		5.2	51.9	51.9	6.1	52.8	
90th \%ile Term Code	Skip	Min		Gap	Hold		Gap	Coord	Coord	Gap	Coord	
70th \%ile Green (s)	0.0	0.0		9.6	8.0		4.7	62.8	62.8	5.1	63.2	
70th \%ile Term Code	Skip	Skip		Gap	Hold		Gap	Coord	Coord	Gap	Coord	
50th \%ile Green (s)	0.0	0.0		8.1	6.5		0.0	64.5	64.5	4.9	72.5	
50th \%ile Term Code	Skip	Skip		Gap	Hold		Skip	Coord	Coord	Gap	Coord	
30th \%ile Green (s)	0.0	0.0		7.1	0.0		0.0	73.5	73.5	0.0	73.5	
30th \%ile Term Code	Skip	Skip		Gap	Skip		Skip	Coord	Coord	Skip	Coord	
10th \%ile Green (s)	0.0	0.0		0.0	0.0		0.0	83.7	83.7	0.0	83.7	
10th \%ile Term Code	Skip	Skip		Skip	Skip		Skip	Coord	Coord	Skip	Coord	
Stops (vph)		0		65	0		3	64	6	1	126	
Fuel Used(gal)		0		1	0		0	2	0	1	8	
CO Emissions (g/hr)		1		86	14		7	159	27	36	578	
NOx Emissions (g/hr)		0		17	3		1	31	5	7	113	
VOC Emissions (g/hr)		0		20	3		2	37	6	8	134	
Dilemma Vehicles (\#)		0		0	0		0	15	0	0	10	
Queue Length 50th (ft)		0		44	0		0	2	0	1	14	
Queue Length 95th (ft)		0		77	0		m4	m40	m0	2	144	
Internal Link Dist (ft)		269			466			491			320	
Turn Bay Length (ft)							110		140	250		
Base Capacity (vph)		437		201	702		623	2548	1195	857	1399	

						,	\dagger	7			\checkmark
Lane Group EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Starvation Cap Reductn	0		0	0		0	0	0	0	0	
Spillback Cap Reductn	0		0	0		0	0	0	0	0	
Storage Cap Reductn	0		0	0		0	0	0	0	0	
Reduced v/c Ratio	0.01		0.40	0.07		0.03	0.14	0.07	0.06	0.47	
Intersection Summary											
Area Type: Other	Other										
Cycle Length: 90											
Actuated Cycle Length: 90											
Offset: 22 (24\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow											
Natural Cycle: 60											
Control Type: Actuated-Coordinated											
Maximum v/c Ratio: 0.47											
Intersection Signal Delay: 5.2			Intersection LOS: A								
Intersection Capacity Utilization 58.4\%			ICU Level of Service B								
Analysis Period (min) 15											
m Volume for 95 th percentile queue is	metered	by upstr	am sign								

Splits and Phases: 228: Walmart

	\rangle	\rightarrow		7			4	4	p		\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\hat{i}			\uparrow		\%	\uparrow		\%	¢	
Traffic Volume (vph)	110	0	140	5	10	20	44	777	10	10	495	44
Future Volume (vph)	110	0	140	5	10	20	44	777	10	10	495	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	150		0	150		0
Storage Lanes	1		0	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.922			0.998			0.988	
Flt Protected	0.950				0.993		0.950			0.950		
Satd. Flow (prot)	1770	1583	0	0	1705	0	1770	1859	0	1770	1840	0
Flt Permitted	0.732				0.952		0.364			0.950		
Satd. Flow (perm)	1364	1583	0	0	1635	0	678	1859	0	1770	1840	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		427			22			2			9	
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		335			295			682			908	
Travel Time (s)		7.6			6.7			10.3			13.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	120	0	152	5	11	22	48	845	11	11	538	48
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	120	152	0	0	38	0	48	856	0	11	586	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			20	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru										
Leading Detector (t)	20	100		20	100		20	100		20	100	
Trailing Detector (tt)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Prot	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2				6	

	\rangle						4	\dagger			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	10.0	10.0		10.0	10.0		9.5	22.5		9.5	22.5	
Total Split (s)	15.5	15.5		15.5	15.5		16.0	65.0		9.5	58.5	
Total Split (\%)	17.2\%	17.2\%		17.2\%	17.2\%		17.8\%	72.2\%		10.6\%	65.0\%	
Maximum Green (s)	11.0	11.0		11.0	11.0		11.5	60.5		5.0	54.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.5	4.5			4.5		4.5	4.5		4.5	4.5	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	
Act Efft Green (s)	10.4	10.4			10.4		70.0	68.7		5.1	64.1	
Actuated g/C Ratio	0.12	0.12			0.12		0.78	0.76		0.06	0.71	
v/c Ratio	0.76	0.27			0.18		0.08	0.60		0.11	0.45	
Control Delay	68.9	1.2			22.8		2.5	7.0		41.5	4.8	
Queue Delay	0.0	0.0			0.0		0.0	0.4		0.0	0.0	
Total Delay	68.9	1.2			22.8		2.5	7.3		41.5	4.8	
LOS	E	A			C		A	A		D	A	
Approach Delay		31.1			22.8			7.1			5.4	
Approach LOS		C			C			A			A	
90th \%ile Green (s)	11.0	11.0		11.0	11.0		6.7	60.5		5.0	58.8	
90th \%ile Term Code	Max	Max		Hold	Hold		Gap	Coord		Max	Coord	
70th \%ile Green (s)	11.0	11.0		11.0	11.0		6.3	70.0		0.0	59.2	
70th \%ile Term Code	Max	Max		Hold	Hold		Gap	Coord		Skip	Coord	
50th \%ile Green (s)	11.0	11.0		11.0	11.0		6.0	70.0		0.0	59.5	
50th \%ile Term Code	Max	Max		Hold	Hold		Gap	Coord		Skip	Coord	
30th \%ile Green (s)	11.0	11.0		11.0	11.0		0.0	70.0		0.0	70.0	
30th \%ile Term Code	Max	Max		Hold	Hold		Skip	Coord		Skip	Coord	
10th \%ile Green (s)	8.2	8.2		8.2	8.2		0.0	72.8		0.0	72.8	
10th \%ile Term Code	Gap	Gap		Hold	Hold		Skip	Coord		Skip	Coord	
Stops (vph)	98	0			19		9	289		12	112	
Fuel Used(gal)	2	0			0		0	8		0	5	
CO Emissions (g/hr)	166	28			24		23	574		20	356	
NOx Emissions (g/hr)	32	5			5		4	112			69	
VOC Emissions (g/hr)	38	6			6		5	133		5	82	
Dilemma Vehicles (\#)	0	0			0		0	32		0	44	
Queue Length 50th (ft)	67	0			8		2	43		6	73	
Queue Length 95th (ft)	\#153	0			37		m7	384		m12	m108	
Internal Link Dist (ft)		255			215			602			828	
Turn Bay Length (ft)							150			150		
Base Capacity (vph)	166	568			219		670	1418		100	1312	
Starvation Cap Reductn	0	0			0		0	167		0	0	
Spillback Cap Reductn	0	0			0		0	0		0	0	
Storage Cap Reductn	0	0			0		0	0		0	0	
Reduced v/c Ratio	0.72	0.27			0.17		0.07	0.68		0.11	0.45	

Intersection Summary
Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 90
Offset: 2 (2\%), Referenced to phase 2:NBTL and 6:SBT, Start of Yellow
Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.76
Intersection Signal Delay: 10.5 Intersection LOS: B
Intersection Capacity Utilization 61.8\% ICU Level of Service B
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 7: MMCT Casino/Eversource

	1	4			\pm	$\frac{1}{7}$		
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	$\varnothing 1$	$\varnothing 2$
Lane Configurations	*	「	性		*	44		
Traffic Volume (vph)	121	165	1032	35	125	1252		
Future Volume (vph)	121	165	1032	35	125	1252		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Storage Length (ft)	0	100		0	0			
Storage Lanes	1	1		0	1			
Taper Length (ft)	25				25			
Lane Util. Factor	1.00	1.00	0.95	0.95	1.00	0.95		
Frt		0.850	0.995					
Flt Protected	0.950				0.950			
Satd. Flow (prot)	1517	1495	3330	0	1770	3406		
Flt Permitted	0.950				0.950			
Satd. Flow (perm)	1517	1495	3330	0	1770	3406		
Right Turn on Red		Yes		Yes				
Satd. Flow (RTOR)		39	5					
Link Speed (mph)	25		45			45		
Link Distance (ft)	1258		264			430		
Travel Time (s)	34.3		4.0			6.5		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Heavy Vehicles (\%)	19\%	8\%	8\%	4\%	2\%	6\%		
Adj. Flow (vph)	132	179	1122	38	136	1361		
Shared Lane Traffic (\%)								
Lane Group Flow (vph)	132	179	1160	0	136	1361		
Enter Blocked Intersection	No	No	No	No	No	No		
Lane Alignment	Left	Right	Right	Right	Left	Left		
Median Width(ft)	30		12			20		
Link Offset(ft)	0		0			0		
Crosswalk Width(ft)	16		16			16		
Two way Left Turn Lane								
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Turning Speed (mph)	15	9		9	15			
Number of Detectors	1	1	2		1	0		
Detector Template								
Leading Detector (ft)	34	34	100		34	0		
Trailing Detector (ft)	0	0	0		0	0		
Detector 1 Position(ft)	0	0	0		0	0		
Detector 1 Size(ft)	34	34	6		34	6		
Detector 1 Type	Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	Cl+Ex		
Detector 1 Channel								
Detector 1 Extend (s)	0.0	0.0	0.0		0.0	0.0		
Detector 1 Queue (s)	0.0	0.0	0.0		0.0	0.0		
Detector 1 Delay (s)	0.0	8.0	0.0		0.0	0.0		
Detector 2 Position(ft)			94					
Detector 2 Size(ft)			6					
Detector 2 Type			$\mathrm{Cl}+\mathrm{Ex}$					
Detector 2 Channel								
Detector 2 Extend (s)			0.0					
Turn Type	Prot	pm+ov	NA		Prot	NA		
Protected Phases	4	5	6		5	125	1	2

Splits and Phases: 21: Thompson Rd

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7		\&		\%	44		${ }^{7}$	中1	
Traffic Volume (vph)	58	5	116	5	2	18	113	1071	13	26	1256	11
Future Volume (vph)	58	5	116	5	2	18	113	1071	13	26	1256	11
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		100	0		0	0		0	700		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor								1.00		1.00		
Frt			0.850		0.900			0.998			0.999	
Flt Protected		0.956			0.991		0.950			0.950		
Satd. Flow (prot)	0	1736	1509	0	1695	0	1530	3369	0	1805	3404	0
Flt Permitted		0.722			0.939		0.950			0.950		
Satd. Flow (perm)	0	1311	1509	0	1606	0	1530	3369	0	1804	3404	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			182		20			2			1	
Link Speed (mph)		30			25			45			45	
Link Distance (ft)		731			393			430			1397	
Travel Time (s)		16.6			10.7			6.5			21.2	
Confl. Peds. (\#/hr)									1	1		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	5\%	0\%	7\%	0\%	0\%	0\%	18\%	7\%	0\%	0\%	6\%	0\%
Adj. Flow (vph)	63	5	126	5	2	20	123	1164	14	28	1365	12
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	68	126	0	27	0	123	1178	0	28	1377	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Right	Right
Median Width(ft)		0			0			24			30	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		1	0		1	2	
Detector Template	Left			Left			Left					
Leading Detector (ft)	20	29	29	20	29		34	0		29	306	
Trailing Detector (ft)	0	-5	-5	0	-5		0	0		-5	150	
Detector 1 Position(ft)	0	-5	-5	0	-5		0	0		-5	150	
Detector 1 Size(ft)	20	34	34	20	34		34	6		34	6	
Detector 1 Type	Cl+Ex	Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex		Cl+Ex	Cl+Ex		CI+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	8.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)											300	
Detector 2 Size(ft)											6	
Detector 2 Type											Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)											0.0	

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA	Perm	Perm	NA		Prot	NA		Prot	NA	
Protected Phases		4			4		1	6		5	2	
Permitted Phases	4		4	4								
Detector Phase	4	4	4	4	4		1			5	2	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		5.0	15.0		5.0	15.0	
Minimum Split (s)	12.6	12.6	12.6	12.6	12.6		11.6	21.2		10.2	21.2	
Total Split (s)	16.8	16.8	16.8	16.8	16.8		19.2	47.0		26.2	54.0	
Total Split (\%)	18.7\%	18.7\%	18.7\%	18.7\%	18.7\%		21.3\%	52.2\%		29.1\%	60.0\%	
Maximum Green (s)	11.2	11.2	11.2	11.2	11.2		12.6	40.8		21.0	47.8	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0	4.8		3.0	4.8	
All-Red Time (s)	2.6	2.6	2.6	2.6	2.6		3.6	1.4		2.2	1.4	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		5.6	5.6		5.6		6.6	6.2		5.2	6.2	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5	1.5	1.5	1.5	1.5		1.5	2.5		1.5	2.5	
Recall Mode	None	None	None	None	None		None	C-Min		None	C-Min	
Act Effct Green (s)		10.3	10.3		10.3		10.2	51.9		10.8	51.1	
Actuated g/C Ratio		0.11	0.11		0.11		0.11	0.58		0.12	0.57	
v/c Ratio		0.45	0.38		0.13		0.71	0.61		0.13	0.71	
Control Delay		46.9	5.2		20.2		64.5	7.2		39.0	16.3	
Queue Delay		0.0	0.0		0.0		0.0	0.1		0.0	0.0	
Total Delay		46.9	5.2		20.2		64.5	7.3		39.0	16.3	
LOS		D	A		C		E	A		D	B	
Approach Delay		19.8			20.2			12.7			16.8	
Approach LOS		B			C			B			B	
90th \%ile Green (s)	11.2	11.2	11.2	11.2	11.2		12.6	46.2		15.6	47.8	
90th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Gap	Coord	
70th \%ile Green (s)	11.2	11.2	11.2	11.2	11.2		12.6	49.0		12.8	47.8	
70th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Gap	Coord	
50th \%ile Green (s)	12.2	12.2	12.2	12.2	12.2		11.1	50.0		10.8	48.3	
50th \%ile Term Code	Gap	Gap	Gap	Gap	Gap		Gap	Coord		Gap	Coord	
30th \%ile Green (s)	10.0	10.0	10.0	10.0	10.0		8.9	54.2		8.8	52.7	
30th \%ile Term Code	Gap	Gap	Gap	Gap	Gap		Gap	Coord		Gap	Coord	
10th \%ile Green (s)	7.0	7.0	7.0	7.0	7.0		5.9	60.0		6.0	58.7	
10th \%ile Term Code	Min	Min	Min	Min	Min		Gap	Coord		Gap	Coord	
Stops (vph)		57	6		13		113	236		25	927	
Fuel Used(gal)		1	1		0		3	8		1	27	
CO Emissions (g/hr)		89	57		17		224	528		53	1903	
NOx Emissions (g/hr)		17	11		3		44	103		10	370	
VOC Emissions (g/hr)		21	13		4		52	122		12	441	
Dilemma Vehicles (\#)		0	0		0		0	65		0	49	
Queue Length 50th (ft)		36	0		4		76	83		14	313	
Queue Length 95th (ft)		79	19		28		m127	94		m20	m463	
Internal Link Dist (ft)		651			313			350			1317	
Turn Bay Length (ft)			100							700		
Base Capacity (vph)		166	350		220		214	1942		421	1931	
Starvation Cap Reductn		0	0		0		0	90		0	0	

Splits and Phases: 201: South Main St (Rt-5) \& Main St (Rt-510)/Prospect Hill Plaza

					*	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		4	「	${ }^{1}$	4
Traffic Volume (vph)	28	27	1011	56	58	1239
Future Volume (vph)	28	27	1011	56	58	1239
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	8	12
Storage Length (ft)	0	0		250	75	
Storage Lanes	1	0		1	1	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.934			0.850		
Flt Protected	0.975				0.950	
Satd. Flow (prot)	1656	0	1743	1615	1564	1776
Flt Permitted	0.975				0.070	
Satd. Flow (perm)	1656	0	1743	1615	115	1776
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	29			61		
Link Speed (mph)	30		45			45
Link Distance (ft)	1378		1115			1349
Travel Time (s)	31.3		16.9			20.4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	4\%	5\%	9\%	0\%	0\%	7\%
Adj. Flow (vph)	30	29	1099	61	63	1347
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	59	0	1099	61	63	1347
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			8
Link Offset(ft)	0		0			0
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.20	1.00
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		0	0	0	0
Detector Template						
Leading Detector (ft)	25		0	0	0	0
Trailing Detector (ft)	-5		0	0	0	0
Detector 1 Position(ft)	-5		0	0	0	0
Detector 1 Size(ft)	30		6	20	20	6
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
Turn Type	Prot		NA	pm+ov	D.P+P	NA
Protected Phases	4		2	4	1	12
Permitted Phases				2	2	
Detector Phase	4					
Switch Phase						
Minimum Initial (s)	5.0		15.0	5.0	5.0	

						$\frac{1}{1}$
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Split (s)	9.4		22.8	9.4	9.0	
Total Split (s)	9.4		65.6	9.4	15.0	
Total Split (\%)	10.4\%		72.9\%	10.4\%	16.7\%	
Maximum Green (s)	5.0		57.8	5.0	11.0	
Yellow Time (s)	3.0		4.8	3.0	3.0	
All-Red Time (s)	1.4		3.0	1.4	1.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	4.4		7.8	4.4	4.0	
Lead/Lag			Lag		Lead	
Lead-Lag Optimize?						
Vehicle Extension (s)	1.5		3.0	1.5	3.0	
Recall Mode	None		C-Max	None	Max	
Act Effct Green (s)	5.0		57.8	68.7	74.5	79.3
Actuated g/C Ratio	0.06		0.64	0.76	0.83	0.88
v/c Ratio	0.50		0.98	0.05	0.21	0.86
Control Delay	39.7		39.7	0.4	10.9	9.6
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	39.7		39.7	0.4	10.9	9.6
LOS	D		D	A	B	A
Approach Delay	39.7		37.6			9.6
Approach LOS	D		D			A
90th \%ile Green (s)	5.0		57.8	5.0	11.0	
90th \%ile Term Code	Max		Coord	Max	MaxR	
70th \%ile Green (s)	5.0		57.8	5.0	11.0	
70th \%ile Term Code	Max		Coord	Max	MaxR	
50th \%ile Green (s)	5.0		57.8	5.0	11.0	
50th \%ile Term Code	Max		Coord	Max	MaxR	
30th \%ile Green (s)	5.0		57.8	5.0	11.0	
30th \%ile Term Code	Max		Coord	Max	MaxR	
10th \%ile Green (s)	0.0		57.8	0.0	20.4	
10th \%ile Term Code	Skip		Coord	Skip	MaxR	
Stops (vph)	33		798	2	24	727
Fuel Used(gal)	1		29	1	2	40
CO Emissions (g/hr)	84		2032	45	124	2811
NOx Emissions (g/hr)	16		395	9	24	547
VOC Emissions (g/hr)	19		471	10	29	651
Dilemma Vehicles (\#)	0		58	0	0	1
Queue Length 50th (ft)	17		467	1	1	382
Queue Length 95th (ft)	\#61		\#845	3	m2	m264
Internal Link Dist (ft)	1298		1035			1269
Turn Bay Length (ft)				250	75	
Base Capacity (vph)	119		1119	1247	302	1564
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.50		0.98	0.05	0.21	0.86
Intersection Summary						
Area Type: Other						

Cycle Length: 90
Actuated Cycle Length: 90
Offset: 55 (61%), Referenced to phase 2:NBSB, Start of Yellow
Natural Cycle: 110
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.98

Intersection Signal Delay: 22.7	Intersection LOS: C
Intersection Capacity Utilization 76.4\%	ICU Level of Service D

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 205: Phelps Rd (CT-191)

	4	\rightarrow		4			4	\dagger		($\frac{1}{1}$	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	4	Tr		* ${ }^{\circ}$		${ }^{7} 1$	性		${ }^{1}$	44	「
Traffic Volume (vph)	530	367	938	75	283	116	625	441	81	73	280	511
Future Volume (vph)	530	367	938	75	283	116	625	441	81	73	280	511
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	350		290	0		200	400		0	205		130
Storage Lanes	1		2	0		1	2		0	2		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.95	0.95	0.88	0.95	0.95	0.95	0.97	0.95	0.95	1.00	0.95	1.00
Ped Bike Factor								1.00		1.00		
Frt			0.850		0.963			0.977				0.850
Flt Protected	0.950	0.990			0.992		0.950			0.950		
Satd. Flow (prot)	1603	1735	2733	0	3146	0	3273	3271	0	1703	3374	1583
Flt Permitted	0.950	0.990			0.992		0.950			0.950		
Satd. Flow (perm)	1603	1735	2733	0	3146	0	3273	3271	0	1696	3374	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			502		40			25				177
Link Speed (mph)		45			35			45			45	
Link Distance (ft)		734			813			1397			571	
Travel Time (s)		11.1			15.8			21.2			8.7	
Confl. Peds. (\#/hr)									1	1		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	7\%	2\%	4\%	0\%	10\%	15\%	7\%	7\%	10\%	6\%	7\%	2\%
Adj. Flow (vph)	576	399	1020	82	308	126	679	479	88	79	304	555
Shared Lane Traffic (\%)	17\%											
Lane Group Flow (vph)	478	497	1020	0	516	0	679	567	0	79	304	555
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		33			12			32			24	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		1	2		1	2	0
Detector Template				Left								
Leading Detector (ft)	29	34	29	20	48		34	326		39	326	0
Trailing Detector (ft)	-5	0	-10	0	0		0	150		5	150	0
Detector 1 Position(ft)	-5	0	-10	0	0		0	150		5	150	0
Detector 1 Size(ft)	34	34	39	20	48		34	6		34	6	20
Detector 1 Type	Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	8.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(ft)								320			320	
Detector 2 Size(ft)								6			6	
Detector 2 Type								$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel												
Detector 2 Extend (s)								0.0			0.0	

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Split	NA	pm+ov	Split	NA		Prot	NA		Prot	NA	pm+ov
Protected Phases	4	4	1	8	8		1	6		5	2	4
Permitted Phases			4								2	2
Detector Phase	4	4	4	8	8		1	6		5	2	2
Switch Phase												
Minimum Initial (s)	9.0	9.0	5.0	9.0	9.0		5.0	15.0		5.0	15.0	9.0
Minimum Split (s)	15.5	15.5	10.9	15.7	15.7		10.9	21.0		10.0	21.0	15.5
Total Split (s)	24.6	24.6	25.0	19.2	19.2		25.0	36.2		10.0	21.2	24.6
Total Split (\%)	27.3\%	27.3\%	27.8\%	21.3\%	21.3\%		27.8\%	40.2\%		11.1\%	23.6\%	27.3\%
Maximum Green (s)	18.1	18.1	19.1	12.5	12.5		19.1	30.2		5.0	15.2	18.1
Yellow Time (s)	3.3	3.3	3.0	4.1	4.1		3.0	4.8		3.0	4.8	3.3
All-Red Time (s)	3.2	3.2	2.9	2.6	2.6		2.9	1.2		2.0	1.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.5	6.5	5.9		6.7		5.9	6.0		5.0	6.0	6.5
Lead/Lag			Lead				Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	2.0	2.0	2.0		2.0	2.5		2.0	2.5	3.0
Recall Mode	None	None	None	None	None		None	C-Min		None	C-Min	None
Act Effct Green (s)	18.1	18.1	37.8		12.5		19.1	30.2		5.0	15.2	39.3
Actuated g/C Ratio	0.20	0.20	0.42		0.14		0.21	0.34		0.06	0.17	0.44
v/c Ratio	1.48	1.42	0.71		1.10		0.98	0.51		0.84	0.54	0.70
Control Delay	262.4	237.6	8.2		105.2		54.7	24.3		94.4	37.3	17.1
Queue Delay	0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.3
Total Delay	262.4	237.6	8.2		105.2		54.7	24.3		94.4	37.3	17.3
LOS	F	F	A		F		D	C		F	D	B
Approach Delay		126.2			105.2			40.9			30.3	
Approach LOS		F			F			D			C	
90th \%ile Green (s)	18.1	18.1	19.1	12.5	12.5		19.1	30.2		5.0	15.2	18.1
90th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	Max
70th \%ile Green (s)	18.1	18.1	19.1	12.5	12.5		19.1	30.2		5.0	15.2	18.1
70th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	Max
50th \%ile Green (s)	18.1	18.1	19.1	12.5	12.5		19.1	30.2		5.0	15.2	18.1
50th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	Max
30th \%ile Green (s)	18.1	18.1	19.1	12.5	12.5		19.1	30.2		5.0	15.2	18.1
30th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	Max
10th \%ile Green (s)	18.3	18.3	19.1	12.5	12.5		19.1	30.0		5.0	15.0	18.3
10th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	Max
Stops (vph)	332	348	371		369		560	467		61	237	296
Fuel Used(gal)	30	29	11		16		20	13		2	6	7
CO Emissions (g/hr)	2078	2000	744		1100		1370	918		170	427	514
NOx Emissions (g/hr)	404	389	145		214		267	179		33	83	100
VOC Emissions (g/hr)	482	463	173		255		317	213		39	99	119
Dilemma Vehicles (\#)	0	17	0		22		0	19		0	19	0
Queue Length 50th (ft)	~398	~ 406	53		~165		201	152		47	68	112
Queue Length 95th (ft)	\#595	\#606	86		\#269		\#304	197		m\#97	118	200
Internal Link Dist (ft)		654			733			1317			491	
Turn Bay Length (ft)	350		290				400			205		130
Base Capacity (vph)	323	349	1440		471		694	1114		94	569	770
Starvation Cap Reductn	0	0	0		0		0	0		0	0	22

[^6]Synchro 10 Report Page 15

m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 209: I-91 Access/Egress/Newberry Rd

	4	\rightarrow		7			4	\dagger	p		\dagger	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	44	「	${ }^{7}$	㤽		${ }^{4} 1$	4	「	${ }^{7}$	\uparrow	
Traffic Volume（vph）	190	1035	203	146	445	94	307	402	198	137	200	175
Future Volume（vph）	190	1035	203	146	445	94	307	402	198	137	200	175
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width（ft）	11	11	11	11	11	11	10	11	12	11	12	12
Storage Length（ft）	0		0	260		475	300		200	200		0
Storage Lanes	1		1	1		1	2		1	1		0
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	0.95	0.97	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor									0.99	1.00		
Frt			0.850		0.974				0.850		0.930	
Fit Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1558	3172	1516	1504	3246	0	3083	1640	1442	1517	1488	0
Flt Permitted	0.342			0.122			0.950			0.950		
Satd．Flow（perm）	561	3172	1516	193	3246	0	3083	1640	1423	1513	1488	0
Right Turn on Red			No			No			No			No
Satd．Flow（RTOR）												
Link Speed（mph）		35			45			45			45	
Link Distance（ft）		381			922			908			783	
Travel Time（s）		7.4			14.0			13.8			11.9	
Confl．Peds．（\＃／hr）									1	1		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	12\％	10\％	3\％	16\％	4\％	8\％	6\％	12\％	12\％	15\％	8\％	31\％
Adj．Flow（vph）	207	1125	221	159	484	102	334	437	215	149	217	190
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	207	1125	221	159	586	0	334	437	215	149	407	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（ft）		11			11			20			20	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.09	1.04	1.00	1.04	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		12	15		12
Number of Detectors	1	1	0	1	1		1	1	1	1	1	
Detector Template												
Leading Detector（ft）	29	256	0	30	315		29	29	29	29	29	
Trailing Detector（ft）	－5	250	0	－5	310		－5	－5	－5	－5	－5	
Detector 1 Position（ft）	－5	250	0	－5	310		－5	－5	－5	－5	－5	
Detector 1 Size（ft）	34	6	20	35	5		34	34	34	34	34	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex		$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Turn Type	pm＋pt	NA	pm＋ov	pm＋pt	NA		Prot	NA	pm＋ov	Prot	NA	
Protected Phases	5	2	3	1	6		3	8	1	7	4	
Permitted Phases	2		2	6					8			
Detector Phase	5	2	2	1	6		3	8	8	7	4	

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	6.0	15.0	4.0	6.0	15.0		4.0	9.0	6.0	4.0	5.0	
Minimum Split (s)	11.8	20.5	8.0	12.6	20.5		8.0	15.8	12.6	8.0	11.8	
Total Split (s)	15.7	39.3	11.0	14.5	38.1		11.0	27.2	14.5	9.0	25.2	
Total Split (\%)	17.4\%	43.7\%	12.2\%	16.1\%	42.3\%		12.2\%	30.2\%	16.1\%	10.0\%	28.0\%	
Maximum Green (s)	9.9	33.8	7.0	7.9	32.6		7.0	20.4	7.9	5.0	18.4	
Yellow Time (s)	3.0	4.5	3.0	3.0	4.5		3.0	4.4	3.0	3.0	4.4	
All-Red Time (s)	2.8	1.0	1.0	3.6	1.0		1.0	2.4	3.6	1.0	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.8	5.5	4.0	6.6	5.5		4.0	6.8	6.6	4.0	6.8	
Lead/Lag	Lead	Lag	Lead	Lead	Lag		Lead	Lag	Lead	Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5	4.0	1.5	1.5	4.0		1.5	2.5	1.5	1.5	2.5	
Recall Mode	None	C-Min	None	None	C-Min		None	None	None	None	None	
Act Effct Green (s)	42.1	33.4	46.5	39.4	32.8		7.6	20.4	28.3	5.6	18.4	
Actuated g/C Ratio	0.47	0.37	0.52	0.44	0.36		0.08	0.23	0.31	0.06	0.20	
v/c Ratio	0.57	0.96	0.28	0.81	0.50		1.28	1.18	0.48	1.59	1.34	
Control Delay	17.6	44.5	12.2	49.2	24.0		186.4	135.9	23.2	336.8	204.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	17.6	44.5	12.2	49.2	24.0		186.4	135.9	23.2	336.8	204.8	
LOS	B	D	B	D	C		F	F	C	F	F	
Approach Delay		36.3			29.4			128.4			240.1	
Approach LOS		D			C			F			F	
90th \%ile Green (s)	9.9	33.8	7.0	7.9	32.6		7.0	20.4	7.9	5.0	18.4	
90th \%ile Term Code	Max	Coord	Max	Max	Coord		Max	Max	Max	Max	Max	
70th \%ile Green (s)	9.9	33.8	7.0	7.9	32.6		7.0	20.4	7.9	5.0	18.4	
70th \%ile Term Code	Max	Coord	Max	Max	Coord		Max	Max	Max	Max	Max	
50th \%ile Green (s)	9.9	33.8	7.0	7.9	32.6		7.0	20.4	7.9	5.0	18.4	
50th \%ile Term Code	Max	Coord	Max	Max	Coord		Max	Max	Max	Max	Max	
30th \%ile Green (s)	8.8	33.8	7.0	7.9	33.7		7.0	20.4	7.9	5.0	18.4	
30th \%ile Term Code	Gap	Coord	Max	Max	Coord		Max	Max	Max	Max	Max	
10th \%ile Green (s)	6.8	31.6	10.1	7.0	32.6		10.1	20.4	7.0	8.1	18.4	
10th \%ile Term Code	Gap	Coord	Max	Gap	Coord		Max	Max	Gap	Max	Max	
Stops (vph)	99	919	103	81	403		223	316	134	89	289	
Fuel Used(gal)	2	19	2	3	11		16	17	4	11	21	
CO Emissions (g/hr)	136	1338	129	234	760		1135	1218	263	783	1474	
NOx Emissions (g/hr)	26	260	25	45	148		221	237	51	152	287	
VOC Emissions (g/hr)	32	310	30	54	176		263	282	61	181	342	
Dilemma Vehicles (\#)	0	70	0	0	30		0	26	0	0	15	
Queue Length 50th (ft)	58	333	55	47	134		~131	~ 313	81	~128	~305	
Queue Length 95th (ft)	m83	\#462	m90	\#152	184		m\#219	\#483	m143	\#246	\#482	
Internal Link Dist (ft)		301			842			828			703	
Turn Bay Length (ft)				260			300		200	200		
Base Capacity (vph)	377	1191	776	199	1183		260	371	449	94	304	
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	
Reduced v/c Ratio	0.55	0.94	0.28	0.80	0.50		1.28	1.18	0.48	1.59	1.34	

Intersection Summary
Area Type: \quad Other
Cycle Length: $90 \quad$ Intersection LOS: F
Actuated Cycle Length: 90
Offset: 14 (16\%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow
Natural Cycle: 130
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.59
Intersection Signal Delay: $88.1 \quad$ ICU Level of Service E
Intersection Capacity Utilization 85.8\%
Analysis Period (min) 15
$\sim \quad$ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
$m \quad$ Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: $\quad 210$: N Rd. (CT-140)/N Rd. (CT140)

	\rangle						4	\dagger	\%			4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			「		\ddagger			1F			${ }^{\text {¢ }}$ ¢	
Traffic Volume (vph)	0	0	3	150	0	18	0	1032	210	9	1272	0
Future Volume (vph)	0	0	3	150	0	18	0	1032	210	9	1272	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	1.00
Frt			0.865		0.985			0.975				
Flt Protected					0.957							
Satd. Flow (prot)	0	0	1096	0	1754	0	0	3300	0	0	3343	0
Flt Permitted					0.957						0.942	
Satd. Flow (perm)	0	0	1096	0	1754	0	0	3300	0	0	3149	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			63		33			54				
Link Speed (mph)		30			30			50			45	
Link Distance (ft)		417			1615			1146			576	
Travel Time (s)		9.5			36.7			15.6			8.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	50\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	0\%	0\%	50\%	1\%	0\%	11\%	14\%	8\%	0\%	6\%	8\%	50\%
Adj. Flow (vph)	0	0	3	163	0	20	0	1122	228	10	1383	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	0	3	0	183	0	0	1350	0	0	1393	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			26			26	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors			0	1	1			0		1	0	
Detector Template				Left						Left		
Leading Detector (ft)			0	20	25			0		20	0	
Trailing Detector (ft)			0	0	0			0		0	0	
Detector 1 Position(ft)			0	0	0			0		0	0	
Detector 1 Size(ft)			20	20	25			0		20	0	
Detector 1 Type			Extend	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)			0.0	0.0	0.0			0.0		0.0	0.0	
Detector 1 Queue (s)			0.0	0.0	0.0			0.0		0.0	0.0	
Detector 1 Delay (s)			0.0	0.0	0.0			0.0		0.0	0.0	
Turn Type			Perm	Perm	NA			NA		Perm	NA	
Protected Phases					4			2			2	
Permitted Phases			4	4						2		
Detector Phase			4	4	4							
Switch Phase												
Minimum Initial (s)			9.0	9.0	9.0			15.0		15.0	15.0	
Minimum Split (s)			13.0	13.0	13.0			20.7		20.7	20.7	
Total Split (s)			26.0	26.0	26.0			64.0		64.0	64.0	
Total Split (\%)			28.9\%	28.9\%	28.9\%			71.1\%		71.1\%	71.1\%	

	4			1				4	\%		\dagger	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)			22.0	22.0	22.0			58.3		58.3	58.3	
Yellow Time (s)			3.0	3.0	3.0			4.7		4.7	4.7	
All-Red Time (s)			1.0	1.0	1.0			1.0		1.0	1.0	
Lost Time Adjust (s)			0.0		0.0			0.0			0.0	
Total Lost Time (s)			4.0		4.0			5.7			5.7	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)			3.0	3.0	3.0			3.0		3.0	3.0	
Recall Mode			None	None	None			C-Max		C-Max	C-Max	
Act Effct Green (s)			13.4		13.4			66.9			66.9	
Actuated g/C Ratio			0.15		0.15			0.74			0.74	
v/c Ratio			0.01		0.63			0.55			0.60	
Control Delay			0.0		38.8			6.2			4.9	
Queue Delay			0.0		0.0			0.0			0.0	
Total Delay			0.0		38.8			6.2			4.9	
LOS			A		D			A			A	
Approach Delay					38.8			6.2			4.9	
Approach LOS					D			A			A	
90th \%ile Green (s)			18.7	18.7	18.7			61.6		61.6	61.6	
90th \%ile Term Code			Gap	Gap	Gap			Coord		Coord	Coord	
70th \%ile Green (s)			15.4	15.4	15.4			64.9		64.9	64.9	
70th \%ile Term Code			Gap	Gap	Gap			Coord		Coord	Coord	
50th \%ile Green (s)			13.1	13.1	13.1			67.2		67.2	67.2	
50th \%ile Term Code			Gap	Gap	Gap			Coord		Coord	Coord	
30th \%ile Green (s)			10.8	10.8	10.8			69.5		69.5	69.5	
30th \%ile Term Code			Gap	Gap	Gap			Coord		Coord	Coord	
10th \%ile Green (s)			9.0	9.0	9.0			71.3		71.3	71.3	
10th \%ile Term Code			Min	Min	Min			Coord		Coord	Coord	
Stops (vph)			0		125			485			332	
Fuel Used(gal)			0		4			18			44	
CO Emissions (g/hr)			1		289			1262			3084	
NOx Emissions (g/hr)			0		56			245			600	
VOC Emissions (g/hr)			0		67			292			715	
Dilemma Vehicles (\#)			0		0			69			81	
Queue Length 50th (ft)			0		81			133			102	
Queue Length 95th (ft)			0		139			231			m116	
Internal Link Dist (ft)		337			1535			1066			496	
Turn Bay Length (ft)												
Base Capacity (vph)			315		453			2466			2340	
Starvation Cap Reductn			0		0			0			0	
Spillback Cap Reductn			0		0			0			0	
Storage Cap Reductn			0		0			0			0	
Reduced v/c Ratio			0.01		0.40			0.55			0.60	
Intersection Summary												
Area Type:												
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 0 (0\%), Referenced	hase 2:	SB, S	rt of Ye									

Natural Cycle: 45
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.63
Intersection Signal Delay: 7.6 Intersection LOS: A
Intersection Capacity Utilization 63.7\% ICU Level of Service B
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 211: Crow Park Rd / Scantic Rd

	4						4	4	p		\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	7		\uparrow	7	\%	\uparrow		\%	¢	
Traffic Volume (vph)	15	12	4	8	19	89	4	1021	14	178	1286	43
Future Volume (vph)	15	12	4	8	19	89	4	1021	14	178	1286	43
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	8	12	12	12	12	12	12
Storage Length (ft)	0		80	0		30	120		0	200		0
Storage Lanes	0		1	0		1	1		0	1		0
Taper Length (tt)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00	0.97		1.00							
Frt			0.850			0.850		0.998			0.995	
Flt Protected		0.973			0.985		0.950			0.950		
Satd. Flow (prot)	0	1780	1313	0	1872	1400	1703	1736	0	1687	1799	0
Flt Permitted		0.812			0.888		0.079			0.073		
Satd. Flow (perm)	0	1478	1275	0	1683	1400	142	1736	0	130	1799	0
Right Turn on Red			No			Yes			Yes			Yes
Satd. Flow (RTOR)						143		1			3	
Link Speed (mph)		25			35			45			45	
Link Distance (ft)		551			1467			2227			2334	
Travel Time (s)		15.0			28.6			33.7			35.4	
Confl. Peds. (\#/hr)	1		1	1								
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	7\%	0\%	23\%	0\%	0\%	0\%	6\%	9\%	25\%	7\%	5\%	7\%
Adj. Flow (vph)	16	13	4	9	21	97	4	1110	15	193	1398	47
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	29	4	0	30	97	4	1125	0	193	1445	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.20	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1	1	1	3		1	3	
Detector Template	Left			Left								
Leading Detector (ft)	20	20	15	20	25	20	33	326		33	326	
Trailing Detector (ft)	0	0	0	0	0	0	-5	0		-5	0	
Detector 1 Position(ft)	0	0	0	0	0	0	-5	0		-5	0	
Detector 1 Size(tt)	20	20	15	20	25	20	38	6		38	6	
Detector 1 Type	Cl+Ex		Cl+Ex	Cl+Ex								
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	2.0	8.0	0.0	8.0	8.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)								144			94	
Detector 2 Size(ft)								6			6	
Detector 2 Type								Cl+Ex			Cl+Ex	
Detector 2 Channel												

Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Ideal Flow (vphpl)
Lane Width (ft)
Storage Length (ft)
Storage Lanes
Taper Length (ft)
Lane Util. Factor
Ped Bike Factor
Frt
FIt Protected
Satd. Flow (prot)
Flt Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Confl. Peds. (\#/hr)
Peak Hour Factor
Heavy Vehicles (\%)
Adj. Flow (vph)
Shared Lane Traffic (\%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(ft)
Link Offset(ft)
Crosswalk Width(ft)
Two way Left Turn Lane
Headway Factor
Turning Speed (mph)
Number of Detectors
Detector Template
Leading Detector (ft)
Trailing Detector (ft)
Detector 1 Position(ft)
Detector 1 Size(ft)
Detector 1 Type
Detector 1 Channel
Detector 1 Extend (s)
Detector 1 Queue (s)
Detector 1 Delay (s)
Detector 2 Position(ft)
Detector 2 Size(ft)
Detector 2 Type
Detector 2 Channel
Route 5 Study 04/17/2018 2040 PM Base Condition
SFM

Lane Group	$\varnothing 3$
Detector 2 Extend (s)	
Detector 3 Position(ft)	
Detector 3 Size(ft)	
Detector 3 Type	
Detector 3 Channel	
Detector 3 Extend (s)	
Turn Type	
Protected Phases	3
Permitted Phases	
Detector Phase	
Switch Phase	
Minimum Initial (s)	7.0
Minimum Split (s)	22.0
Total Split (s)	22.0
Total Split (\%)	24\%
Maximum Green (s)	18.0
Yellow Time (s)	4.0
All-Red Time (s)	0.0
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	Lag
Lead-Lag Optimize?	
Vehicle Extension (s)	3.0
Recall Mode	None
Walk Time (s)	7.0
Flash Dont Walk (s)	9.0
Pedestrian Calls (\#/hr)	10
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
90th \%ile Green (s)	16.0
90th \%ile Term Code	Ped
70th \%ile Green (s)	0.0
70th \%ile Term Code	Skip
50th \%ile Green (s)	0.0
50th \%ile Term Code	Skip
30th \%ile Green (s)	0.0
30th \%ile Term Code	Skip
10th \%ile Green (s)	0.0
10th \%ile Term Code	Skip
Stops (vph)	
Fuel Used(gal)	
CO Emissions (g/hr)	

Route 5 Study 04/17/2018 2040 PM Base Condition

4							\dagger	p		\downarrow	\checkmark
Lane Group EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
NOx Emissions (g/hr)	7	1		11	16	2	564		66	467	
VOC Emissions (g/hr)	9	1		13	19	2	672		79	556	
Dilemma Vehicles (\#)	0	0		2	0	0	67		0	71	
Queue Length 50th (tt)	16	2		17	0	0	~ 684		63	15	
Queue Length 95th (ft)	45	13		45	20	m1	m\#887		m68	m\#974	
Internal Link Dist (t)	471			1387			2147			2254	
Turn Bay Length (ft)		80			30	120			200		
Base Capacity (vph)	82	70		93	212	188	1057		311	1413	
Starvation Cap Reductn	0	0		0	0	0	0		0	0	
Spillback Cap Reductn	0	0		0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0		0	0	
Reduced v/c Ratio	0.35	0.06		0.32	0.46	0.02	1.06		0.62	1.02	
Intersection Summary											
Area Type: Other											
Cycle Length: 90											
Actuated Cycle Length: 90											
Offset: 83 (92\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow											
Natural Cycle: 150											
Control Type: Actuated-Coordinated											
Maximum v/c Ratio: 1.06											
Intersection Signal Delay: 38.6				Intersection LOS: D							
Intersection Capacity Utilization 95.3\%				ICU Level of Service F							
Analysis Period (min) 15											
~ Volume exceeds capacity, queue is theoretically infinite.											
Queue shown is maximum after two cycles.											
\# 95th percentile volume exceeds capacity, queue may be longer.											
Queue shown is maximum after two cycles.											
m Volume for 95th percentile queue is	etere	by ups	m sig								

Splits and Phases: 213: Tromley Rd

Lane Group $\quad \emptyset 3$
NOx Emissions (g/hr)
VOC Emissions (g/hr)
Dilemma Vehicles (\#)
Queue Length 50th (ft)
Queue Length 95th (ft)
Internal Link Dist (ft)
Turn Bay Length (ft)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\uparrow		\%	F			\uparrow	F
Traffic Volume (vph)	13	0	22	2		12	5	1024	21	22	1257	23
Future Volume (vph)	13	0	22	2	2	12	5	1024	21	22	1257	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	8	12	12	12	8	12	12	8	12	8
Storage Length (ft)	0		30	0		0	50		0	0		50
Storage Lanes	0		1	0		0	1		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.897			0.997				0.850
Flt Protected		0.950			0.994		0.950				0.999	
Satd. Flow (prot)	0	1641	1386	0	1499	0	1384	1773	0	0	1746	1386
Flt Permitted					0.955		0.087				0.970	
Satd. Flow (perm)	0	1727	1386	0	1440	0	127	1773	0	0	1695	1386
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			48		13			3				16
Link Speed (mph)		25			35			45			45	
Link Distance (ft)		801			1499			4074			1892	
Travel Time (s)		21.8			29.2			61.7			28.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	10\%	0\%	1\%	0\%	0\%	17\%	13\%	7\%	0\%	50\%	8\%	1\%
Adj. Flow (vph)	14	0	24	2	2	13	5	1113	23	24	1366	25

Shared Lane Traffic (\%)

Lane Group Flow (vph)	0	14	24	0	17	0	5	1136	0	0	1390	25
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		10			0			8			8	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.20	1.00	1.00	1.00	1.20	1.00	1.00	1.20	1.00	1.20
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		0	0		0	0	1
Detector Template	Left		Right	Left								Right
Leading Detector (ft)	20	20	20	20	29		0	0		0	0	20
Trailing Detector (tt)	0	0	0	0	-5		0	0		0	0	0
Detector 1 Position(ft)	0	0	0	0	-5		0	0		0	0	0
Detector 1 Size(ft)	20	20	20	20	34		20	6		20	6	20
Detector 1 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases		4			4			2				

Permitted Phases	4		4	4		2	2
Detector Phase	4	4	4	4	4	2	
Switch Phase						2	

Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	15.0	15.0	15.0	15.0	15.0

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	9.3	9.3	9.3	9.3	9.3		22.0	22.0		22.0	22.0	22.0
Total Split (s)	15.0	15.0	15.0	15.0	15.0		75.0	75.0		75.0	75.0	75.0
Total Split (\%)	16.7\%	16.7\%	16.7\%	16.7\%	16.7\%		83.3\%	83.3\%		83.3\%	83.3\%	83.3\%
Maximum Green (s)	10.7	10.7	10.7	10.7	10.7		68.0	68.0		68.0	68.0	68.0
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		4.8	4.8		4.8	4.8	4.8
All-Red Time (s)	1.3	1.3	1.3	1.3	1.3		2.2	2.2		2.2	2.2	2.2
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)		4.3	4.3		4.3		7.0	7.0			7.0	7.0
Lead/Lag	Lag	Lag	Lag	Lag	Lag		Lead	Lead		Lead	Lead	Lead
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5	1.5	1.5	1.5	1.5		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None	None	None	None		C-Max	C-Max		C-Max	C-Max	C-Max
Act Effct Green (s)		5.6	5.6		5.6		79.6	79.6			79.6	79.6
Actuated g/C Ratio		0.06	0.06		0.06		0.88	0.88			0.88	0.88
v/c Ratio		0.13	0.18		0.17		0.04	0.72			0.93	0.02
Control Delay		42.2	7.6		26.6		2.8	12.3			11.5	0.7
Queue Delay		0.0	0.0		0.0		0.0	0.0			0.0	0.0
Total Delay		42.2	7.6		26.6		2.8	12.3			11.5	0.7
LOS		D	A		C		A	B			B	A
Approach Delay		20.4			26.6			12.2			11.3	
Approach LOS		C			C			B			B	
90th \%ile Green (s)	7.1	7.1	7.1	7.1	7.1		71.6	71.6		71.6	71.6	71.6
90th \%ile Term Code	Gap	Gap	Gap	Gap	Gap		Coord	Coord		Coord	Coord	Coord
70th \%ile Green (s)	5.8	5.8	5.8	5.8	5.8		72.9	72.9		72.9	72.9	72.9
70th \%ile Term Code	Gap	Gap	Gap	Gap	Gap		Coord	Coord		Coord	Coord	Coord
50th \%ile Green (s)	5.0	5.0	5.0	5.0	5.0		73.7	73.7		73.7	73.7	73.7
50th \%ile Term Code	Min	Min	Min	Min	Min		Coord	Coord		Coord	Coord	Coord
30th \%ile Green (s)	0.0	0.0	0.0	0.0	0.0		83.0	83.0		83.0	83.0	83.0
30th \%ile Term Code	Skip	Skip	Skip	Skip	Skip		Coord	Coord		Coord	Coord	Coord
10th \%ile Green (s)	0.0	0.0	0.0	0.0	0.0		83.0	83.0		83.0	83.0	83.0
10th \%oile Term Code	Skip	Skip	Skip	Skip	Skip		Coord	Coord		Coord	Coord	Coord
Stops (vph)		15	3		10		1	468			203	1
Fuel Used(gal)		0	0		0		0	40			21	0
CO Emissions (g/hr)		18	14		23		12	2795			1483	21
NOx Emissions (g/hr)		4	3		5		2	544			289	4
VOC Emissions (g/hr)		4	3		5		3	648			344	5
Dilemma Vehicles (\#)		0	0		1		0	44			51	0
Queue Length 50th (ft)		8	0		2		0	274			~118	0
Queue Length 95th (ft)		26	11		23		m1	498			m\#1010	m1
Internal Link Dist (ft)		721			1419			3994			1812	
Turn Bay Length (ft)			30				50					50
Base Capacity (vph)		205	207		182		112	1569			1500	1228
Starvation Cap Reductn		0	0		0		0	0			0	0
Spillback Cap Reductn		0	0		0		0	0			0	0
Storage Cap Reductn		0	0		0		0	0			0	0
Reduced v/c Ratio		0.07	0.12		0.09		0.04	0.72			0.93	0.02

Intersection Summary

Area Type: Other

Cycle Length: 90
Actuated Cycle Length: 90
Offset: $36(40 \%)$, Referenced to phase 2:NBSB, Start of Yellow
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.93
Intersection Signal Delay: 11.9 Intersection LOS: B
Intersection Capacity Utilization 97.4\% ICU Level of Service F
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 214: DD/Abbe Rd

		EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Group	10.9	10.9	10.9	10.9	10.9		9.0	70.1		9.0	70.1
Total Split (s)	12.1%	12.1%	12.1%	12.1%	12.1%		10.0%	77.9%	10.0%	77.9%	
Total Split $(\%)$	5.8	5.8	5.8	5.8	5.8		5.0	62.8	5.0	62.8	
Maximum Green (s)	3.3	3.3	3.3	3.3	3.3		3.0	4.8	3.0	4.8	
Yellow Time (s)	1.8	1.8	1.8	1.8	1.8	1.0	2.5	1.0	2.5		
All-Red Time (s)		0.0	0.0		0.0		0.0	0.0	0.0	0.0	
Lost Time Adjust (s)		5.1	5.1		5.1		4.0	7.3	4.0	7.3	
Total Lost Time (s)							Lead	Lag	Lead	Lag	

Lead-Lag Optimize?

Vehicle Extension (s)	1.5	1.5	1.5	1.5	1.5	1.5	3.0	1.5	3.0
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max
Act Effct Green (s)		5.8	5.8		5.8	73.5	68.2	71.1	62.8
Actuated g/C Ratio		0.06	0.06		0.06	0.82	0.76	0.79	0.70
v/c Ratio	1.44	0.77		0.26	1.03	0.78	0.08	1.18	
Control Delay		286.0	34.8		31.8	51.1	18.1	0.8	108.2
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay		286.0	34.8		31.8	51.1	18.1	0.8	108.2

LOS	F	C	C	D	B	A
Approach Delay	137.7		31.8		F	
Approach LOS	F		C		C	106.2

90th \%ile Green (s)	5.8	5.8	5.8	5.8	5.8	5.0	62.8	5.0	62.8
90th \%ile Term Code	Max	Max	Max	Max	Max	Max	Coord	Max	Coord
70th \%ile Green (s)	5.8	5.8	5.8	5.8	5.8	5.0	62.8	5.0	62.8
70th \%ile Term Code	Max	Max	Max	Max	Max	Max	Coord	Max	Coord
50th \%ile Green (s)	5.8	5.8	5.8	5.8	5.8	5.0	71.8	0.0	62.8
50th \%ile Term Code	Max	Max	Max	Max	Max	Max	Coord	Skip	Coord
30th \%ile Green (s)	5.8	5.8	5.8	5.8	5.8	5.0	71.8	0.0	62.8
30th \%ile Term Code	Max	Max	Max	Max	Max	Max	Coord	Skip	Coord
10th \%ile Green (s)	5.8	5.8	5.8	5.8	5.8	5.0	71.8	0.0	62.8
10th \%ile Term Code	Max	Max	Max	Max	Max	Max	Coord	Skip	Coord
Stops (vph)		84	41		15	104	729	1	925
Fuel Used(gal)		8	3		0	6	27	0	56
CO Emissions (g/hr)		582	204		19	392	1893	21	3904
NOx Emissions (g/hr)		113	40		4	76	368	4	759
VOC Emissions (g/hr)		135	47		4	91	439	5	905
Dilemma Vehicles (\#)		0	0		0	0	52	0	50
Queue Length 50th (t)		~99	22		5	~ 50	535	1	~ 445
Queue Length 95th (ft)		\#210	\#124		30	m\#53	m617	m1	\#540
Internal Link Dist (ft)		1063			206		2254		1330
Turn Bay Length (f)			300			150		320	
Base Capacity (vph)		88	237		91	179	1332	358	1237
Starvation Cap Reductn		0	0		0	0	0	0	0
Spillback Cap Reductn		0	0		0	0	0	0	0
Storage Cap Reductn		0	0		0	0	0	0	0
Reduced v/c Ratio		1.44	0.77		0.26	1.03	0.78	0.08	1.18

Intersection Summary

Area Type: Other
Cycle Length: 90

Actuated Cycle Length: 90
Offset: 71 (79%), Referenced to phase 2:SBTL and 6:NBTL, Start of Yellow
Natural Cycle: 150
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.44
Intersection Signal Delay: 75.5 Intersection LOS: E
Intersection Capacity Utilization 107.2\% ICU Level of Service G
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 215: S Water St

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$	「	${ }^{1}$	\uparrow		${ }^{*}$	F	
Traffic Volume (vph)	8	3	3	67	0	25	0	981	68	41	1232	12
Future Volume (vph)	8	3	3	67	0	25	0	981	68	41	1232	12
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	8	8	12	12	8	12	12
Storage Length (ft)	0		0	0		50	50		0	50		0
Storage Lanes	0		0	0		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.99			1.00	0.98						
Frt		0.973				0.850		0.990			0.999	
Flt Protected		0.971			0.950					0.950		
Satd. Flow (prot)	0	1786	0	0	1612	1400	1647	1741	0	1448	1775	0
Flt Permitted		0.804			0.748					0.179		
Satd. Flow (perm)	0	1475	0	0	1263	1365	1647	1741	0	273	1775	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3				41		13			2	
Link Speed (mph)		30			35			45			45	
Link Distance (ft)		411			816			1892			693	
Travel Time (s)		9.3			15.9			28.7			10.5	
Confl. Peds. (\#/hr)	1		1	1		1						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	0\%	0\%	12\%	0\%	0\%	0\%	8\%	9\%	8\%	7\%	0\%
Adj. Flow (vph)	9	3	3	73	0	27	0	1066	74	45	1339	13
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	15	0	0	73	27	0	1140	0	45	1352	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			8			8	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.00	1.00	1.20	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1	1	0	0		0	0	
Detector Template	Left			Left		Right						
Leading Detector (ft)	20	12		20	36	20	0	0		0	0	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	12		20	36	20	20	36		20	6	
Detector 1 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		4			4			2			2	
Permitted Phases	4			4		4	2			2		
Detector Phase	4	4		4	4	4						

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	15.0	15.0		15.0	15.0	
Minimum Split (s)	9.0	9.0		9.0	9.0	9.0	21.4	21.4		21.4	21.4	
Total Split (s)	13.0	13.0		13.0	13.0	13.0	77.0	77.0		77.0	77.0	
Total Split (\%)	14.4\%	14.4\%		14.4\%	14.4\%	14.4\%	85.6\%	85.6\%		85.6\%	85.6\%	
Maximum Green (s)	9.0	9.0		9.0	9.0	9.0	70.6	70.6		70.6	70.6	
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	4.8	4.8		4.8	4.8	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.6	1.6		1.6	1.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.0			4.0	4.0	6.4	6.4		6.4	6.4	
Lead/Lag	Lag	Lag		Lag	Lag	Lag	Lead	Lead		Lead	Lead	
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5	1.5		1.5	1.5	1.5	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	C-Max	C-Max		C-Max	C-Max	
Act Effct Green (s)		7.9			7.9	7.9		74.8		74.8	74.8	
Actuated g/C Ratio		0.09			0.09	0.09		0.83		0.83	0.83	
v/c Ratio		0.11			0.66	0.17		0.79		0.20	0.92	
Control Delay		34.5			67.8	10.0		9.3		2.3	15.5	
Queue Delay		0.0			0.0	0.0		0.0		0.0	0.0	
Total Delay		34.5			67.8	10.0		9.3		2.3	15.5	
LOS		C			E	B		A		A	B	
Approach Delay		34.5			52.2			9.3			15.1	
Approach LOS		C			D			A			B	
90th \%ile Green (s)	9.0	9.0		9.0	9.0	9.0	70.6	70.6		70.6	70.6	
90th \%ile Term Code	Max	Max		Max	Max	Max	Coord	Coord		Coord	Coord	
70th \%ile Green (s)	9.0	9.0		9.0	9.0	9.0	70.6	70.6		70.6	70.6	
70th \%ile Term Code	Max	Max		Max	Max	Max	Coord	Coord		Coord	Coord	
50th \%ile Green (s)	9.0	9.0		9.0	9.0	9.0	70.6	70.6		70.6	70.6	
50th \%ile Term Code	Max	Max		Max	Max	Max	Coord	Coord		Coord	Coord	
30th \%ile Green (s)	7.4	7.4		7.4	7.4	7.4	72.2	72.2		72.2	72.2	
30th \%ile Term Code	Gap	Gap		Gap	Gap	Gap	Coord	Coord		Coord	Coord	
10th \%ile Green (s)	0.0	0.0		0.0	0.0	0.0	83.6	83.6		83.6	83.6	
10th \%ile Term Code	Skip	Skip		Skip	Skip	Skip	Coord	Coord		Coord	Coord	
Stops (vph)		13			61	6		384		3	668	
Fuel Used(gal)		0			2	0		20		0	20	
CO Emissions (g/hr)		15			124	17		1373		28	1412	
NOx Emissions (g/hr)		3			24	3		267		5	275	
VOC Emissions (g/hr)		3			29	4		318		6	327	
Dilemma Vehicles (\#)		0			3	0		47		0	20	
Queue Length 50th (ft)		6			40	0		22		1	389	
Queue Length 95th (ft)		25			\#99	17		597		m3	\#1036	
Internal Link Dist (ft)		331			736			1812			613	
Turn Bay Length (ft)						50				50		
Base Capacity (vph)		150			126	173		1449		227	1475	
Starvation Cap Reductn		0			0	0		0		0	0	
Spillback Cap Reductn		0			0	0		0		0	0	
Storage Cap Reductn		0			0	0		0		0	0	
Reduced v/c Ratio		0.10			0.58	0.16		0.79		0.20	0.92	

Intersection Summary

Area Type: \quad Other
Cycle Length: $90 \quad$ Intersection LOS: B
Actuated Cycle Length: 90
Offset: 14 (16\%), Referenced to phase 2:NBSB, Start of Yellow
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.92
Intersection Signal Delay: $14.1 \quad$ ICU Level of Service D Intersection Capacity Utilization 81.7% Analysis Period (min) 15 $\#$ 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. $m \quad$ Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 216: Stoughton Rd

	4	\rightarrow	\%				4	4	\%			\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow		${ }^{7}$	4						\uparrow	7
Traffic Volume (vph)	0	549	124	403	478	0	0	0	0	235	0	235
Future Volume (vph)	0	549	124	403	478	0	0	0	0	235	0	235
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	0		0	0		50
Storage Lanes	0		0	1		0	0		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.975										0.850
Flt Protected				0.950							0.950	
Satd. Flow (prot)	0	1816	0	1770	1863	0	0	0	0	0	1770	1583
Flt Permitted				0.102							0.950	
Satd. Flow (perm)	0	1816	0	190	1863	0	0	0	0	0	1770	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		16										143
Link Speed (mph)		30			35			30			30	
Link Distance (ft)		684			478			428			360	
Travel Time (s)		15.5			9.3			9.7			8.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	597	135	438	520	0	0	0	0	255	0	255
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	732	0	438	520	0	0	0	0	0	255	255
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors		0		1	0					1	1	1
Detector Template										Left		
Leading Detector (ft)		0		36	0					20	15	15
Trailing Detector (ft)		0		0	0					0	0	0
Detector 1 Position(ft)		0		0	0					0	0	0
Detector 1 Size(ft)		6		36	6					20	15	15
Detector 1 Type		$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$					$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel												
Detector 1 Extend (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Queue (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Delay (s)		0.0		0.0	0.0					0.0	6.0	6.0
Turn Type		NA		D.P+P	NA					Split	NA	Prot
Protected Phases		2		3	32					4	4	4
Permitted Phases				2								
Detector Phase				3						4	4	4
Switch Phase												
Minimum Initial (s)		20.0		5.0						5.0	5.0	5.0
Minimum Split (s)		25.5		9.9						10.3	10.3	10.3
Total Split (s)		43.0		27.0						20.0	20.0	20.0

Intersection Summary

Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 90

Offset: $0(0 \%)$, Referenced to phase 2:EBWB, Start of Yellow
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.92
Intersection Signal Delay: 32.2 Intersection LOS: C
Intersection Capacity Utilization 84.9\% ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 219: Bridge St (CT-140)

	4	\rightarrow	\checkmark	7			4	4	p		\downarrow	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		* \uparrow			44			\uparrow	Tr			
Traffic Volume (vph)	178	606	0	0	665	262	216	0	725	0	0	0
Future Volume (vph)	178	606	0	0	665	262	216	0	725	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	250		300	0		0
Storage Lanes	0		0	0		0	1		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.95	0.95	1.00	1.00	0.95	0.95	1.00	1.00	0.88	1.00	1.00	1.00
Frt					0.958				0.850			
Flt Protected		0.989						0.950				
Satd. Flow (prot)	0	3500	0	0	3391	0	0	1770	2787	0	0	0
Flt Permitted		0.534						0.950				
Satd. Flow (perm)	0	1890	0	0	3391	0	0	1770	2787	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					101				389			
Link Speed (mph)		35			35			30			30	
Link Distance (ft)		478			323			585			321	
Travel Time (s)		9.3			6.3			13.3			7.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	193	659	0	0	723	285	235	0	788	0	0	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	852	0	0	1008	0	0	235	788	0	0	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			6			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2			0		1	1	1			
Detector Template	Left	Thru					Left					
Leading Detector (ft)	20	100			0		20	6	21			
Trailing Detector (ft)	0	0			0		0	0	-3			
Detector 1 Position(ft)	0	0			0		0	0	-3			
Detector 1 Size(ft)	20	6			6		20	6	24			
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Detector 1 Queue (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Detector 1 Delay (s)	0.0	0.0			0.0		0.0	0.0	9.0			
Detector 2 Position(ft)		94										
Detector 2 Size(ft)		6										
Detector 2 Type		Cl+Ex										
Detector 2 Channel												
Detector 2 Extend (s)		0.0										
Turn Type	custom	NA			NA		Split	NA	custom			
Protected Phases	3	23			25		4	4	45			
Permitted Phases	2											

Lane Group $\quad \varnothing 2 \quad \varnothing 5$
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Ideal Flow (vphpl)
Storage Length (ft)
Storage Lanes
Taper Length (ft)
Lane Util. Factor
Frt
Flt Protected
Satd. Flow (prot)
Flt Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Peak Hour Factor
Adj. Flow (vph)
Shared Lane Traffic (\%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(ft)
Link Offset(ft)
Crosswalk Width(ft)
Two way Left Turn Lane
Headway Factor
Turning Speed (mph)
Number of Detectors
Detector Template
Leading Detector (ft)
SFM 5 Study 04/17/2018 2040 PM Base Condition
Trailing Detector (ft)
Detector 1 Position(ft)
Detector 1 Size(ft)
Detector 1 Type
Detector 1 Channel
Detector 1 Extend (s)
Detector 1 Queue (s)
Detector 1 Delay (s)
Detector 2 Position(ft)
Detector 2 Size(ft)
Detector 2 Type
Detector 2 Channel
Detector 2 Extend (s)
Turn Type
Proted Phases

Lane Group	$\emptyset 2$	$\varnothing 5$
Detector Phase		
Switch Phase		
Minimum Initial (s)	15.0	5.0
Minimum Split (s)	21.5	10.7
Total Split (s)	42.8	12.4
Total Split (\%)	48\%	14\%
Maximum Green (s)	36.3	6.7
Yellow Time (s)	4.5	4.5
All-Red Time (s)	2.0	1.2
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lag
Lead-Lag Optimize?		
Vehicle Extension (s)	3.0	1.5
Recall Mode	C-Max	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
90th \%ile Green (s)	36.3	6.7
90th \%ile Term Code	Coord	Max
70th \%ile Green (s)	36.3	6.7
70th \%ile Term Code	Coord	Max
50 th \%ile Green (s)	37.6	5.4
50th \%ile Term Code	Coord	Gap
30th \%ile Green (s)	38.0	5.0
30th \%ile Term Code	Coord	Min
10th \%ile Green (s)	38.0	5.0
10th \%ile Term Code	Coord	Min
Stops (vph)		
Fuel Used(gal)		
CO Emissions (g/hr)		
NOx Emissions (g/hr)		
VOC Emissions (g/hr)		
Dilemma Vehicles (\#)		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		

Route 5 Study 04/17/2018 2040 PM Base Condition
Synchro 10 Report SFM

Intersection Summary \quad Other
Area Type: \quad Cycle Length: $90 \quad$ Intersection LOS: C
Actuated Cycle Length: 90
Offset: 32 (36\%), Referenced to phase 2:EBWB, Start of Yellow
Natural Cycle: 70
Control Type: Actuated-Coordinated
Maximum v/c Ratio: $0.90 \quad$ ICU Level of Service D
Intersection Signal Delay: $25.3 \quad$
Intersection Capacity Utilization 75.7%
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
$m \quad$ Volume for 95 th percentile queue is metered by upstream signal.

Splits and Phases: 220: Bridge St (CT-140)

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\uparrow	F		+10			${ }^{4}+$	
Traffic Volume (vph)	12	4	17	52	8	56	0	999	15	30	1216	15
Future Volume (vph)	12	4	17	52	8	56	0	999	15	30	1216	15
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	0		0	200		0
Storage Lanes	0		0	0		1	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Frt		0.931				0.850		0.998			0.998	
Flt Protected		0.982			0.959						0.999	
Satd. Flow (prot)	0	1258	0	0	1665	1482	0	3308	0	0	3277	0
Flt Permitted		0.850			0.730						0.898	
Satd. Flow (perm)	0	1089	0	0	1267	1482	0	3308	0	0	2945	0
Right Turn on Red			Yes			Yes			Yes			Yes

Satd. Flow (RTOR)		18				61		5			4	
Link Speed (mph)		25			25			45			45	
Link Distance (ft)		484			1094			527			557	
Travel Time (s)		13.2			29.8			8.0			8.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	100\%	8\%	0\%	10\%	6\%	9\%	8\%	9\%	2\%	3\%	10\%	11\%
Adj. Flow (vph)	13	4	18	57	9	61	0	1086	16	33	1322	16

Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	35	0	0	66	61	0	1102	0	0	1371	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(t)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1	1	1	0		1	0	
Detector Template	Left			Left		Right	Left			Left		
Leading Detector (ft)	20	15		20	20	20	20	0		20	0	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	15		20	20	20	20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	

Detector 1 Channel

Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Perm	NA	Perm	NA	Perm		NA	Perm	NA
Protected Phases		4		4			2	2	2
Permitted Phases	4		4		4	2			
Detector Phase	4	4	4	4	4				
Switch Phase									15.0
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	15.0	15.0	15.0	
Minimum Split (s)	11.7	11.7	11.7	11.7	11.7	21.8	21.8	21.8	21.8

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
SBR											
Total Split (s)	12.0	12.0		12.0	12.0	12.0	78.0	78.0	78	78.0	78.0
Total Split (\%)	13.3%	13.3%		13.3%	13.3%	13.3%	86.7%	86.7%	86.7%	86.7%	
Maximum Green (s)	7.3	7.3		7.3	7.3	7.3	71.2	71.2	71.2	71.2	
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	4.8	4.8	4.8	4.8	
All-Red Time (s)	1.7	1.7		1.7	1.7	1.7	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0			0.0	0.0		0.0		0.0	6.8
Total Lost Time (s)		4.7		4.7	4.7		6.8		6.8		

Lead/Lag
Lead-Lag Optimize?

Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	C-Max	C-Max	C-Max	C-Max
Act Effct Green (s)		7.2		7.2	7.2		75.0	75.0	
Actuated g/C Ratio		0.08		0.08	0.08	0.83	0.83		
v/c Ratio	0.34		0.65	0.35	0.40	0.56			
Control Delay	33.9		70.7	16.8	3.2	1.1			
Queue Delay	0.0	0.0	0.0	0.0	0.0				
Total Delay	33.9		70.7	16.8	3.2	1.1			
LOS	C	E	B	A	A				
Approach Delay	33.9		44.8		3.2	1.1			

| Approach LOS | | C | | D | | | A | | A |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 90th \%ile Green (s) | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 | 71.2 | 71.2 | 71.2 | 71.2 |
| 90th \%ile Term Code | Max | Max | Max | Max | Max | Coord | Coord | Coord | Coord |
| 70th \%ile Green (s) | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 | 71.2 | 71.2 | 71.2 | 71.2 |
| 70th \%ile Term Code | Max | Max | Max | Max | Max | Coord | Coord | Coord | Coord |
| 50th \%ile Green (s) | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 | 71.2 | 71.2 | 71.2 | 71.2 |
| 50th \%ile Term Code | Max | Max | Max | Max | Max | Coord | Coord | Coord | Coord |
| 30th \%ile Green (s) | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 | 71.2 | 71.2 | 71.2 | 71.2 |
| 30th \%ile Term Code | Max | Max | Max | Max | Max | Coord | Coord | Coord | Coord |
| 10th \%ile Green (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 83.2 | 83.2 | 83.2 | 83.2 |
| 10th \%ile Term Code | Skip | Skip | Skip | Skip | Skip | Coord | Coord | Coord | Coord |
| Stops (vph) | | 20 | | 54 | 16 | | 261 | | 117 |

Fuel Used (gal)	0	2	1	12	15
CO Emissions (g/hr)	30	116	54	834	1078
NOx Emissions $(\mathrm{g} / \mathrm{hr})$	6	22	11	162	210
VOC Emissions (g/hr)	7	27	13	193	250
Dilemma Vehicles (\#)	0	0	0	64	17
Queue Length 50th (ft)	9	37	0	29	5
Queue Length 95th (ft)	39	$\# 101$	37	151	16
Internal Link Dist (tt)	404			447	477

Turn Bay Length (ft)					
Base Capacity (vph)	102	176	2756	2453	
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.34	0.65	0.35	0.40	0.56

Intersection Summary

Area Type: Other
Cycle Length: 90

Actuated Cycle Length: 90
Offset: 83 (92%), Referenced to phase 2:NBSB, Start of Yellow
Natural Cycle: 55
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.65
Intersection Signal Delay: 4.5 Intersection LOS: A
Intersection Capacity Utilization 73.8\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 222: Southern Auto Auction

	y	\rightarrow	\geqslant	\dagger	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	F		\uparrow		\%	$\hat{1}$			\uparrow	F
Traffic Volume (vph)	102	0	108	5	0	10	24	719	0	20	576	44
Future Volume (vph)	102	0	108	5	0	10	24	719	0	20	576	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	300		0	0		400
Storage Lanes	0		1	0		0	1		0			1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor							1.00					

		0.950	0.850		0.907							0.850
Frt			0.985		0.950				0.998			
Flt Protected	0	1399	1615	0	1664	0	1203	1759	0	0	1743	1272
Satd. Flow (prot)		0.747			0.926		0.343				0.965	
Flt Permitted	0	1100	1615	0	1564	0	434	1759	0	0	1686	1272
Satd. Flow (perm)		Yes			Yes			Yes			Yes	
Right Turn on Red											61	

Link Speed (mph) Link Distance (ft)	25			30			45			45		
	532			223			1555			682		
Travel Time (s)		14.5			5.1			23.6			10.3	
Confl. Peds. (\#/hr)							1					
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	29\%	2\%	0\%	2\%	2\%	2\%	50\%	8\%	2\%	2\%	9\%	27\%
Adj. Flow (vph)	111	0	117	5	0	11	26	782	0	22	626	48

$\left.\begin{array}{lrrrrrrrrrrrr}\text { Shared Lane Traffic (\%) } & 0 & 111 & 117 & 0 & 16 & 0 & 26 & 782 & 0 & 0 & 648 & 48 \\ \text { Lane Group Flow (vph) } & 0 & 112\end{array}\right)$

Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2		1	2		1	2	1
Detector Template	Left	Thru	Right	Left	Thru		Left			Left		Right
Leading Detector (ft)	20	100	20	20	100		20	293		20	283	20
Trailing Detector (ft)	0	0	0	0	0		0	200		0	200	0
Detector 1 Position(ft)	0	0	0	0	0		0	200		0	200	0
Detector 1 Size(ft)	20	6	20	20	6		20	6		20	6	20
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$

Detector 1 Channel

Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94		287		277	
Detector 2 Size(ft)		6			6		6		6	
Detector 2 Type		Cl+Ex			Cl+Ex		Cl+Ex		Cl+Ex	
Detector 2 Channel										

Detector 2 Extend (s)	0.0	0.0	0.0	0.0

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA	Prot	Perm	NA		D.P+P	NA		Perm	NA	Perm
Protected Phases		4	4		4		1	12			2	
Permitted Phases	4			4			2			2		2
Detector Phase	4	4	4	4	4		1	2		2	2	2
Switch Phase												
Minimum Initial (s)	4.5	4.5	4.5	4.5	4.5		4.5			15.0	15.0	15.0
Minimum Split (s)	9.0	9.0	9.0	9.0	9.0		9.0			21.0	21.0	21.0
Total Split (s)	17.0	17.0	17.0	17.0	17.0		11.0			62.0	62.0	62.0
Total Split (\%)	18.9\%	18.9\%	18.9\%	18.9\%	18.9\%		12.2\%			68.9\%	68.9\%	68.9\%
Maximum Green (s)	13.0	13.0	13.0	13.0	13.0		7.0			56.0	56.0	56.0
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0			4.8	4.8	4.8
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		1.0			1.2	1.2	1.2
Lost Time Adjust (s)		0.0	0.0		0.0		0.0				0.0	0.0
Total Lost Time (s)		4.0	4.0		4.0		4.0				6.0	6.0
Lead/Lag							Lead			Lag	Lag	Lag
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0			3.0	3.0	3.0
Recall Mode	None	None	None	None	None		None			C-Min	C-Min	C-Min
Act Effct Green (s)		13.3	13.3		13.3		67.1	68.7			62.5	62.5
Actuated g/C Ratio		0.15	0.15		0.15		0.75	0.76			0.69	0.69
v/c Ratio		0.69	0.35		0.05		0.07	0.58			0.55	0.05
Control Delay		58.3	9.8		0.3		4.3	6.7			12.5	3.0
Queue Delay		0.0	0.0		0.0		0.0	0.0			0.0	0.0
Total Delay		58.3	9.8		0.3		4.3	6.7			12.5	3.0
LOS		E	A		A		A	A			B	A
Approach Delay		33.4			0.3			6.7			11.8	
Approach LOS		C			A			A			B	
90th \%ile Green (s)	13.3	13.3	13.3	13.3	13.3		6.7			56.0	56.0	56.0
90th \%ile Term Code	Max	Max	Max	Max	Max		Gap			Coord	Coord	Coord
70th \%ile Green (s)	17.7	17.7	17.7	17.7	17.7		6.4			51.9	51.9	51.9
70th \%ile Term Code	Gap	Gap	Gap	Gap	Gap		Gap			Coord	Coord	Coord
50th \%ile Green (s)	15.0	15.0	15.0	15.0	15.0		0.0			65.0	65.0	65.0
50th \%ile Term Code	Gap	Gap	Gap	Gap	Gap		Skip			Coord	Coord	Coord
30th \%ile Green (s)	12.2	12.2	12.2	12.2	12.2		0.0			67.8	67.8	67.8
30th \%ile Term Code	Gap	Gap	Gap	Gap	Gap		Skip			Coord	Coord	Coord
10th \%ile Green (s)	8.3	8.3	8.3	8.3	8.3		0.0			71.7	71.7	71.7
10th \%ile Term Code	Gap	Gap	Gap	Gap	Gap		Skip			Coord	Coord	Coord
Stops (vph)		89	20		0		6	185			304	10
Fuel Used(gal)		2	1		0		0	11			8	0
CO Emissions (g/hr)		141	55		2		24	737			554	24
NOx Emissions (g/hr)		27	11		0		5	143			108	5
VOC Emissions (g/hr)		33	13		0		5	171			128	6
Dilemma Vehicles (\#)		0	0		0		0	68			51	0
Queue Length 50th (ft)		59	0		0		5	184			270	1
Queue Length 95th (ft)		\#141	47		0		m4	110			241	m10
Internal Link Dist (ft)		452			143			1475			602	
Turn Bay Length (ft)							300					400
Base Capacity (vph)		175	356		321		384	1358			1186	912
Starvation Cap Reductn		0	0		0		0	0			0	0

Splits and Phases: 225: MMCT Casino

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	7		\uparrow	F	${ }^{7}$	F			\uparrow	F
Traffic Volume (vph)	59	0	74	10	0	8	110	675	12	0	645	44
Future Volume (vph)	59	0	74	10	0	8	110	675	12	0	645	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	12	12	12	12	12	12	12	12	12	12	12
Storage Length (ft)	0		0	0		50	360		0	0		370
Storage Lanes	0		1	0		1	1		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor			0.98									
Frt			0.850			0.850		0.997				0.850
Flt Protected		0.950			0.950		0.950					
Satd. Flow (prot)	0	1543	1615	0	1583	1615	1583	1755	0	0	1792	1482
Flt Permitted		0.750			0.715		0.328					
Satd. Flow (perm)	0	1218	1577	0	1192	1615	547	1755	0	0	1792	1482
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			80			112		5				61
Link Speed (mph)		25			25			45			45	
Link Distance (ft)		626			337			1217			1555	
Travel Time (s)		17.1			9.2			18.4			23.6	

Confl. Bikes (\#/hr)	1											
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	17%	0%	0%	14%	0%	0%	14%	8%	3%	0%	6%	9%
Adj. Flow (vph)	64	0	80	11	0	9	120	734	13	0	701	48

Shared Lane Traffic (\%)											
Lane Group Flow (vph)	0	64	80	0	11	9	120	747	0	0	701
Enter Blocked Intersection	No										
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left
Median Width(ft)		5			0			12			0
Link Offset(ft)		0			0			0		6	
Crosswalk Width(ft)		16			16			16			16

Two way Left Turn Lane												
Headway Factor	1.04	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1	1	1	2		1	2	2
Detector Template	Left			Left						Left		
Leading Detector (tt)	20	29	29	20	14	14	24	366		20	366	366
Trailing Detector (ft)	0	-5	-5	0	-10	-10	-10	180		0	180	180
Detector 1 Position(ft)	0	-5	-5	0	-10	-10	-10	180		0	180	180
Detector 1 Size(ft)	20	34	34	20	24	24	34	6		20	6	6
Detector 1 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$						
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 2 Position(ft)								360			360	360
Detector 2 Size(ft)								6			6	6
Detector 2 Type								$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$

Detector 2 Channel

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Extend (s)								0.0		0.0	0.0	
Turn Type	Perm	NA	pm+ov	Perm	NA	Perm	D.P+P	NA		NA	Perm	
Protected Phases		4	1		4		1	12		2		
Permitted Phases	4		4	4		4	2			2		2
Detector Phase	4	4	4	4	4	4	1	2		2	2	2

Switch Phase

Minimum Initial (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	15.0	15.0	15.0
Minimum Split (s)	9.0	9.0	9.0	9.0	9.0	9.0	9.0	23.4	23.4	23.4
Total Split (s)	9.0	9.0	9.0	9.0	9.0	9.0	9.0	72.0	72.0	72.0
Total Split (\%)	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	80.0%	80.0%	80.0%
Maximum Green (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	63.8	63.8	63.8
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.8	4.8	4.8
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	3.4	3.4	3.4
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0		0.0	0.0
Total Lost Time (s)		4.0	4.0		4.0	4.0	4.0		Lead	Lag
Lead/Lag			Lead					Lag	8.2	

Lead-Lag Optimize?

Vehicle Extension (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5		2.5	2.5	2.5
Recall Mode	None		C-Min	C-MM	C-Min						
Act Effct Green (s)		8.3	13.6		8.3	8.3	69.7	73.7		60.2	60.2
Actuated g/C Ratio		0.09	0.15		0.09	0.09	0.77	0.82		0.67	0.67
v/C Ratio	0.57	0.26		0.10	0.04	0.25	0.52		0.58	0.05	
Control Delay		62.1	10.2		40.4	0.2	6.1	12.1		6.0	0.3
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		E	10.2		40.4	0.2	6.1	12.1	6.0	0.3	
LOS		B	D	A	A	B		A	A		
Approach Delay		E		22.3			11.3	5.6	B		A

Approach LOS	C			C			5.0		A		
90th \%ile Green (s)	5.0	5.0	5.0	5.0	5.0	5.0			63.8	63.8	63.8
90th \%ile Term Code	Max		Coord	Coord	Coord						
70th \%ile Green (s)	11.2	11.2	6.1	11.2	11.2	11.2	6.1		56.5	56.5	56.5
70th \%ile Term Code	Gap		Coord	Coord	Coord						
50th \%ile Green (s)	10.2	10.2	5.5	10.2	10.2	10.2	5.5		58.1	58.1	58.1
50th \%ile Term Code	Gap		Coord	Coord	Coord						
30th \%ile Green (s)	8.9	8.9	5.0	8.9	8.9	8.9	5.0		59.9	59.9	59.9
30th \%ile Term Code	Gap		Coord	Coord	Coord						
10th \%ile Green (s)	6.4	6.4	4.5	6.4	6.4	6.4	4.5		62.9	62.9	62.9
10th \%ile Term Code	Gap	Gap	Min	Gap	Gap	Gap	Min		Coord	Coord	Coord
Stops (vph)		46	17		12	0	42	402		241	1
Fuel Used(gal)		1	1		0	0	2	14		10	0
CO Emissions (g/hr)		86	43		11	2	127	972		719	32
NOX Emissions (g/hr)		17	8		2	0	25	189		140	6
VOC Emissions (g/hr)		20	10		3	0	29	225		167	7
Dilemma Vehicles (\#)		0	0		0	0	0	87		14	0
Queue Length 50th (tt)		35	0		6	0	49	395		310	1
Queue Length 95th (ft)		\#117	39		23	0	4	20		51	m0
Internal Link Dist (ft)		546			257			1137		1475	
Turn Bay Length (ft)						50	360				370
Base Capacity (vph)		112	307		110	251	485	1506		1270	1068

						4	4	p		\downarrow	\checkmark
Lane Group EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Starvation Cap Reductn	0	0		0	0	0	0			0	0
Spillback Cap Reductn	0	0		0	0	0	0			0	0
Storage Cap Reductn	0	0		0	0	0	0			0	0
Reduced v/c Ratio	0.57	0.26		0.10	0.04	0.25	0.50			0.55	0.04
Intersection Summary											
Area Type: Other											
Cycle Length: 90											
Actuated Cycle Length: 90											
Offset: 6 (7\%), Referenced to phase 2:NBSB, Start of Yellow											
Natural Cycle: 60											
Control Type: Actuated-Coordinated											
Maximum v/c Ratio: 0.58											
Intersection Signal Delay: 10.8				Intersection LOS: B							
Intersection Capacity Utilization 93.6\% ICU Level of Service F											
Analysis Period (min) 15											
\# 95th percentile volume exceeds capacity, queue may be longer.											
Queue shown is maximum after two cycles.											
m Volume for 95th percentile queue is	metere	by ups	am sig								

Splits and Phases: 226: Big Y/Ethos

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	$\hat{1}$		\%	$\hat{\beta}$		${ }^{7}$	个4	F	${ }^{7}$	\hat{F}	
Trafic Volume (vph)	47	11	77	224	31	124	123	625	338	108	563	54
Future Volume (vph)	47	11	77	224	31	124	123	625	338	108	563	54
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	12	12	12	12	12	12	12	12	12	12	12
Storage Length (ft)	0		0	0		0	110		140	250		0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	1.00	1.00
Ped Bike Factor		0.98										
Fit		0.869			0.880				0.850		0.987	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1745	1613	0	1736	1633	0	1805	3312	1524	1770	1763	0
Flt Permitted	0.889			0.526			0.235			0.356		
Satd. Flow (perm)	1633	1613	0	961	1633	0	446	3312	1524	663	1763	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		84			135				367		10	
Link Speed (mph)		25			25			45			45	
Link Distance (ft)		349			546			571			400	
Travel Time (s)		9.5			14.9			8.7			6.1	

Confl. Bikes (\#/hr)	1											
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0%	0%	0%	4%	0%	3%	0%	9%	6%	2%	7%	0%
Adj. Flow (vph)	51	12	84	243	34	135	134	679	367	117	612	59

Shared Lane Traffic (\%)											
Lane Group Flow (vph)	51	96	0	243	169	0	134	679	367	117	671
Enter Blocked Intersection	No										
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left
Median Width(ft)		12			12			12			12
Link Offset(ft)		0			0			0		0	
Crosswalk Width(ft)		16			16			16		16	

Two way Left Turn Lane

Headway Factor	1.04	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	2	1	1	2	
Detector Template									Right		Thru	
Leading Detector (ft)	30	30		33	46		48	356	20	38	100	
Trailing Detector (ft)	-5	-5		-5	0		0	165	0	0	0	
Detector 1 Position(ft)	-5	-5		-5	0		0	165	0	0	0	
Detector 1 Size(ft)	35	35		38	46		48	6	20	38	6	
Detector 1 Type	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex		
Detector 1 Channel												

Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)						350		94	
Detector 2 Size(ft)						6		6	
Detector 2 Type					CI+Ex		CI+Ex		

Detector 2 Channel

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Extend (s)								0.0			0.0	
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8			2		2	6		
Detector Phase	7	4		3	8		5	2	2	1	6	
Switch Phase												
Minimum Initial (s)	3.6	5.0		3.6	5.0		3.6	13.1	13.1	4.1	13.1	
Minimum Split (s)	8.1	9.7		8.1	9.7		8.1	24.3	24.3	8.1	21.3	
Total Split (s)	8.1	10.0		10.0	11.9		8.1	61.8	61.8	8.2	61.9	
Total Split (\%)	9.0\%	11.1\%		11.1\%	13.2\%		9.0\%	68.7\%	68.7\%	9.1\%	68.8\%	
Maximum Green (s)	5.0	5.3		6.9	7.2		5.0	55.5	55.5	5.1	55.6	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	4.5	4.5	3.0	4.5	
All-Red Time (s)	0.1	1.7		0.1	1.7		0.1	1.8	1.8	0.1	1.8	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.1	4.7		3.1	4.7		3.1	6.3	6.3	3.1	6.3	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.5	2.5	2.0	2.5	
Recall Mode	None	None		None	None		None	C-Min	C-Min	None	C-Min	
Act Effct Green (s)	11.4	5.2		24.0	17.0		56.5	47.6	47.6	56.3	47.5	
Actuated g/C Ratio	0.13	0.06		0.27	0.19		0.63	0.53	0.53	0.63	0.53	
v / c Ratio	0.24	0.56		0.61	0.41		0.37	0.39	0.38	0.24	0.72	
Control Delay	29.1	25.4		38.0	14.2		8.1	13.3	4.0	2.4	13.3	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	29.1	25.4		38.0	14.2		8.1	13.3	4.0	2.4	13.3	
LOS	C	C		D	B		A	B	A	A	B	
Approach Delay		26.7			28.2			9.8			11.6	
Approach LOS		C			C			A			B	
90th \%ile Green (s)	5.2	5.3		7.1	7.2		5.0	55.3	55.3	5.1	55.4	
90th \%ile Term Code	Max	Max		Max	Max		Max	Coord	Coord	Max	Coord	
70th \%ile Green (s)	7.4	5.3		18.8	16.7		5.0	43.6	43.6	5.1	43.7	
70th \%ile Term Code	Gap	Max		Max	Hold		Max	Coord	Coord	Max	Coord	
50th \%ile Green (s)	6.5	5.4		19.8	18.7		7.3	40.6	40.6	7.0	40.3	
50th \%ile Term Code	Gap	Gap		Gap	Hold		Gap	Coord	Coord	Gap	Coord	
30th \%ile Green (s)	0.0	5.0		16.6	24.7		6.3	45.2	45.2	6.0	44.9	
30th \%ile Term Code	Skip	Min		Gap	Hold		Gap	Coord	Coord	Gap	Coord	
10th \%ile Green (s)	0.0	0.0		19.3	17.7		5.0	53.3	53.3	4.9	53.2	
10th \%ile Term Code	Skip	Skip		Gap	Hold		Gap	Coord	Coord	Gap	Coord	
Stops (vph)	40	28		161	39		46	302	55	11	437	
Fuel Used(gal)	1	1		3	1		1	8	2	1	14	
CO Emissions (g/hr)	40	58		237	92		86	543	155	92	949	
NOx Emissions (g/hr)	8	11		46	18		17	106	30	18	185	
VOC Emissions (g/hr)	9	13		55	21		20	126	36	21	220	
Dilemma Vehicles (\#)	0	0		0	0		0	29	0	0	32	
Queue Length 50th (ft)	20	7		106	16		48	134	67	4	388	
Queue Length 95th (ft)	56	\#57		\#241	\#98		m10	m22	m0	11	74	
Internal Link Dist (ft)		269			466			491			320	
Turn Bay Length (ft)							110		140	250		
Base Capacity (vph)	215	174		397	417		366	2042	1080	484	1092	

	4	\rightarrow		7	\checkmark	4	4	\dagger	p	\%	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	
Reduced v/c Ratio	0.24	0.55		0.61	0.41		0.37	0.33	0.34	0.24	0.61	
Intersection Summary												
Area Type:												

Cycle Length: 90
Actuated Cycle Length: 90
Offset: 22 (24\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow
Natural Cycle: 65
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.72
Intersection Signal Delay: 14.4 Intersection LOS: B
Intersection Capacity Utilization 73.3\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 228: Walmart

	\rangle	\rightarrow		7	\leftarrow		4	4	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow			\uparrow		\%	\uparrow		${ }^{7}$	\hat{F}	
Traffic Volume (vph)	110	0	154	20	10	20	44	369	0	10	487	44
Future Volume (vph)	110	0	154	20	10	20	44	369	0	10	487	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	150		0	150		0
Storage Lanes	1		0	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.946						0.988	
Flt Protected	0.950				0.980		0.950			0.950		
Satd. Flow (prot)	1770	1583	0	0	1727	0	1770	1863	0	1770	1840	0
Flt Permitted	0.810				0.782		0.361			0.950		
Satd. Flow (perm)	1509	1583	0	0	1378	0	672	1863	0	1770	1840	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		408			22						9	
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		335			295			682			908	
Travel Time (s)		7.6			6.7			10.3			13.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	120	0	167	22	11	22	48	401	0	11	529	48
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	120	167	0	0	55	0	48	401	0	11	577	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			20	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru										
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex										
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Prot	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2				6	

7: Eversource

	7						4				\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	9.5		9.5	9.5		9.5	22.5		9.5	22.5	
Total Split (s)	23.0	23.0		23.0	23.0		10.0	57.0		10.0	57.0	
Total Split (\%)	25.6\%	25.6\%		25.6\%	25.6\%		11.1\%	63.3\%		11.1\%	63.3\%	
Maximum Green (s)	18.5	18.5		18.5	18.5		5.5	52.5		5.5	52.5	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.5	4.5			4.5		4.5	4.5		4.5	4.5	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	
Act Effct Green (s)	12.7	12.7			12.7		67.4	66.3		5.8	62.0	
Actuated g/C Ratio	0.14	0.14			0.14		0.75	0.74		0.06	0.69	
v/c Ratio	0.56	0.29			0.26		0.08	0.29		0.10	0.45	
Control Delay	45.5	1.3			24.9		4.3	7.0		56.4	3.9	
Queue Delay	0.0	0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay	45.5	1.3			24.9		4.3	7.0		56.4	3.9	
LOS	D	A			C		A	A		E	A	
Approach Delay		19.8			24.9			6.7			4.9	
Approach LOS		B			C			A			A	
90th \%ile Green (s)	18.5	18.5		18.5	18.5		5.5	52.5		5.5	52.5	
90th \%ile Term Code	Max	Max		Hold	Hold		Max	Coord		Max	Coord	
70th \%ile Green (s)	14.7	14.7		14.7	14.7		6.4	66.3		0.0	55.4	
70th \%ile Term Code	Gap	Gap		Hold	Hold		Gap	Coord		Skip	Coord	
50th \%ile Green (s)	12.6	12.6		12.6	12.6		6.1	68.4		0.0	57.8	
50th \%ile Term Code	Gap	Gap		Hold	Hold		Gap	Coord		Skip	Coord	
30th \%ile Green (s)	10.4	10.4		10.4	10.4		0.0	70.6		0.0	70.6	
30th \%ile Term Code	Gap	Gap		Hold	Hold		Skip	Coord		Skip	Coord	
10th \%ile Green (s)	7.3	7.3		7.3	7.3		0.0	73.7		0.0	73.7	
10th \%ile Term Code	Gap	Gap		Hold	Hold		Skip	Coord		Skip	Coord	
Stops (vph)	100	0			30		14	146		8	148	
Fuel Used(gal)	2	0			1		0	4		0	5	
CO Emissions (g/hr)	130	31			38		28	278		19	377	
NOx Emissions (g/hr)	25	6			7		6	54		4	73	
VOC Emissions (g/hr)	30	7					7	64		4	87	
Dilemma Vehicles (\#)	0	0			0		0	29		0	14	
Queue Length 50th (ft)	65	0			17		10	99		7	38	
Queue Length 95th (ft)	112	0			48		20	146		m13	m38	
Internal Link Dist (ft)		255			215			602			828	
Turn Bay Length (ft)							150			150		
Base Capacity (vph)	310	649			300		574	1372		114	1270	
Starvation Cap Reductn	0	0			0		0	0		0	0	
Spillback Cap Reductn	0	0			0		0	0		0	0	
Storage Cap Reductn	0	0			0		0	0		0	0	
Reduced v/c Ratio	0.39	0.26			0.18		0.08	0.29		0.10	0.45	

Intersection Summary
Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 90
Offset: 26 (29\%), Referenced to phase 2:NBTL and 6:SBT, Start of Yellow
Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.56
Intersection Signal Delay: 9.4 Intersection LOS: A
Intersection Capacity Utilization 61.2\% ICU Level of Service B
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.

Splits and Phases: 7: Eversource

	\rangle			7			4	\uparrow	p		\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%		\%		\uparrow	7	\%	中t		\%	性	
Traffic Volume (vph)	14	0	10	87	0	171	10	953	114	226	1459	16
Future Volume (vph)	14	0	10	87	0	171	10	953	114	226	1459	16
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		100	0		0	0		0
Storage Lanes	1		1	0		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt			0.850			0.850		0.984			0.998	
Flt Protected	0.950				0.950		0.950			0.950		
Satd. Flow (prot)	1770	0	1583	0	1517	1495	1770	3302	0	1770	3400	0
Flt Permitted	0.695				0.950		0.156			0.950		
Satd. Flow (perm)	1295	0	1583	0	1517	1495	291	3302	0	1770	3400	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			119			45		18			2	
Link Speed (mph)		30			25			45			45	
Link Distance (ft)		283			1258			264			430	
Travel Time (s)		6.4			34.3			4.0			6.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	2\%	2\%	2\%	19\%	2\%	8\%	2\%	8\%	4\%	2\%	6\%	2\%
Adj. Flow (vph)	15	0	11	95	0	186	11	1036	124	246	1586	17
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	15	0	11	0	95	186	11	1160	0	246	1603	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Right	Right	Left	Left	Right
Median Width(tt)		12			30			12			20	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1		1	1	2	1	1	2		1	0	
Detector Template	Left		Right		Thru		Left					
Leading Detector (ft)	20		20	34	100	34	20	100		34	0	
Trailing Detector (ft)	0		0	0	0	0	0	0		0	0	
Detector 1 Position(ft)	0		0	0	0	0	0	0		0	0	
Detector 1 Size(ft)	20		20	34	6	34	20	6		34	6	
Detector 1 Type	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	8.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)					94			94				
Detector 2 Size(ft)					6			6				
Detector 2 Type					Cl+Ex			Cl+Ex				
Detector 2 Channel												
Detector 2 Extend (s)					0.0			0.0				
Turn Type	D.Pm		Perm	Prot	NA	custom	Perm	NA		Prot	NA	
Protected Phases				4	8	5		6		5	125	

Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Ideal Flow (vphpl)
Storage Length (ft)
Storage Lanes
Taper Length (ft)
Lane Util. Factor
Frt
Flt Protected
Satd. Flow (prot)
Flt Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Peak Hour Factor
Heavy Vehicles (\%)
Adj. Flow (vph)
Shared Lane Traffic (\%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(ft)
Link Offset(ft)
Crosswalk Width(ft)
Two way Left Turn Lane
Headway Factor
Turning Speed (mph)
Number of Detectors
Detector Template
Leading Detector (ft)
Trailing Detector (ft)
Detector 1 Position(ft)
Detector 1 Size(ft)
Detector 1 Type
Detector 1 Channel
Detector 1 Extend (s)
Detector 1 Queue (s)
Detector 1 Delay (s)
Detector 2 Position(ft)
Detector 2 Size(ft)
Detector 2 Type
Detector 2 Channel
Detector 2 Extend (s)
Turn Type
Protected Phases

	4		\cdots	\dagger		4	4	4	$\%$		$\frac{1}{1}$	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	4		4			4	6					
Detector Phase	4		4	4	8	4	6	6		5		
Switch Phase												
Minimum Initial (s)	7.0		7.0	7.0	5.0	5.0	15.0	15.0		5.0		
Minimum Split (s)	12.6		12.6	12.6	22.5	10.2	21.2	21.2		10.2		
Total Split (s)	22.5		22.5	22.5	22.5	22.0	45.5	45.5		22.0		
Total Split (\%)	25.0\%		25.0\%	25.0\%	25.0\%	24.4\%	50.6\%	50.6\%		24.4\%		
Maximum Green (s)	16.9		16.9	16.9	18.0	16.8	39.3	39.3		16.8		
Yellow Time (s)	3.0		3.0	3.0	3.5	3.0	4.8	4.8		3.0		
All-Red Time (s)	2.6		2.6	2.6	1.0	2.2	1.4	1.4		2.2		
Lost Time Adjust (s)	0.0		0.0		0.0	0.0	0.0	0.0		0.0		
Total Lost Time (s)	5.6		5.6		4.5	5.2	6.2	6.2		5.2		
Lead/Lag						Lead	Lag	Lag		Lead		
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5		1.5	1.5	3.0	1.5	2.5	2.5		1.5		
Recall Mode	None		None	None	None	None	C-Min	C-Min		None		
Walk Time (s)					7.0							
Flash Dont Walk (s)					11.0							
Pedestrian Calls (\#/hr)					0							
Act Effct Green (s)	16.9		16.9		18.0	37.5	41.1	41.1		15.0	60.1	
Actuated g/C Ratio	0.19		0.19		0.20	0.42	0.46	0.46		0.17	0.67	
v/c Ratio	0.06		0.03		0.31	0.29	0.08	0.76		0.83	0.71	
Control Delay	30.9		0.1		34.1	13.8	13.8	15.9		63.4	5.6	
Queue Delay	0.0		0.0		0.0	0.0	0.0	0.0		0.0	0.1	
Total Delay	30.9		0.1		34.1	13.8	13.8	15.9		63.4	5.7	
LOS	C		A		C	B	B	B		E	A	
Approach Delay		17.9			20.7			15.9			13.4	
Approach LOS		B			C			B			B	
90th \%ile Green (s)	16.9		16.9	16.9	18.0	16.8	39.3	39.3		16.8		
90th \%ile Term Code	Hold		Hold	Hold	Max	Max	Coord	Coord		Max		
70th \%ile Green (s)	16.9		16.9	16.9	18.0	16.8	39.3	39.3		16.8		
70th \%ile Term Code	Hold		Hold	Hold	Max	Max	Coord	Coord		Max		
50th \%ile Green (s)	16.9		16.9	16.9	18.0	16.8	39.3	39.3		16.8		
50th \%ile Term Code	Hold		Hold	Hold	Max	Max	Coord	Coord		Max		
30th \%ile Green (s)	16.9		16.9	16.9	18.0	14.2	41.9	41.9		14.2		
30th \%ile Term Code	Hold		Hold	Hold	Max	Gap	Coord	Coord		Gap		
10th \%ile Green (s)	16.9		16.9	16.9	18.0	10.5	45.6	45.6		10.5		
10th \%ile Term Code	Hold		Hold	Hold	Hold	Gap	Coord	Coord		Gap		
Stops (vph)	12		0		72	82	5	679		217	236	
Fuel Used(gal)	0		0		2	3	0	17		6	9	
CO Emissions (g/hr)	13		2		127	184	10	1190		437	610	
NOx Emissions (g/hr)	3		0		25	36	2	232		85	119	
VOC Emissions (g/hr)	3		0		29	43	2	276		101	141	
Dilemma Vehicles (\#)	0		0		0	0	0	77		0	129	
Queue Length 50th (ft)	7		0		46	48	2	207		152	77	
Queue Length 95th (ft)	24		0		91	95	m4	316		m171	m109	
Internal Link Dist (ft)		203			1178			184			350	
Turn Bay Length (ft)						100						
Base Capacity (vph)	243		393		303	649	133	1517		330	2270	

Lane Group	$\varnothing 1$	$\emptyset 2$	
Permitted Phases			
Detector Phase			
Switch Phase			
Minimum Initial (s)	5.0	15.0	
Minimum Split (s)	11.6	21.2	
Total Split (s)	17.0	50.5	
Total Split (\%)	19\%	56\%	
Maximum Green (s)	10.4	44.3	
Yellow Time (s)	3.0	4.8	
All-Red Time (s)	3.6	1.4	
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lead	Lag	
Lead-Lag Optimize?			
Vehicle Extension (s)	1.5	2.5	
Recall Mode	None	C-Min	
Walk Time (s)			
Flash Dont Walk (s)			
Pedestrian Calls (\#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
90th \%ile Green (s)	10.4	44.3	
90th \%ile Term Code	Max	Coord	
70th \%ile Green (s)	10.4	44.3	
70th \%ile Term Code	Max	Coord	
50th \%ile Green (s)	8.8	45.9	
50th \%ile Term Code	Gap	Coord	
30th \%ile Green (s)	7.1	47.6	
30th \%ile Term Code	Gap	Coord	
10th \%ile Green (s)	0.0	61.3	
10th \%ile Term Code	Skip	Coord	
Stops (vph)			
Fuel Used(gal)			
CO Emissions (g/hr)			
NOx Emissions (g/hr)			
VOC Emissions (g/hr)			
Dilemma Vehicles (\#)			
Queue Length 50th (ft)			
Queue Length 95th (ft)			
Internal Link Dist (ft)			
Turn Bay Length (ft)			
Base Capacity (vph)			
Route 5 Study 04/17/2 SFM	$10 \mathrm{AM}$	ild Con	Synchro 10 Report Page 10

	7	\rightarrow	7	\dagger	\leftarrow	4	4	\dagger	$>$	*	\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Starvation Cap Reductn	0		0		0	0	0	0		0	101	
Spillback Cap Reductn	0		0		0	0	0	4		0	0	
Storage Cap Reductn	0		0		0	0	0	0		0	0	
Reduced v/c Ratio	0.06		0.03		0.31	0.29	0.08	0.77		0.75	0.74	
Intersection Summary												
Area Type:												

Cycle Length: 90
Actuated Cycle Length: 90
Offset: $0(0 \%)$, Referenced to phase 2:SBT and 6:NBTL, Start of Yellow
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.92

Intersection Signal Delay: 14.9	Intersection LOS: B
Intersection Capacity Utilization 79.2\%	ICU Level of Service D

Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 21: Thompson Rd

Lane Group $\quad \varnothing 1 \quad \varnothing 2$
Starvation Cap Reductn
Spilllack Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

	\rangle		4	\uparrow		\checkmark
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	${ }^{\text {\% }}$	F'	${ }^{7}$	4	\uparrow	
Traffic Volume (vph)	50	40	40	1029	1502	54
Future Volume (vph)	50	40	40	1029	1502	54
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	100			0
Storage Lanes	1	1	1			0
Taper Length (ft)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.995	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1770	1583	1770	1863	1853	0
Flt Permitted	0.950		0.950			
Satd. Flow (perm)	1770	1583	1770	1863	1853	0
Link Speed (mph)	30			45	45	
Link Distance (ft)	274			934	476	
Travel Time (s)	6.2			14.2	7.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	54	43	43	1118	1633	59
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	54	43	43	1118	1692	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 92.3\% ICU Level of Service F						
Analysis Period (min) 15						

	7	4	\uparrow	p		\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		「	4	F		\uparrow
Trafic Volume (vph)	0	21	1109	43	0	1658
Future Volume (vph)	0	21	1109	43	0	1658
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0		150	0	
Storage Lanes	0	1		1	0	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.865		0.850		
Flt Protected 0.80						
Satd. Flow (prot)	0	1611	1863	1583	0	1863
Flt Permitted						
Satd. Flow (perm)	0	1611	1863	1583	0	1863
Link Speed (mph)	30		45			45
Link Distance (ft)	323		349			1965
Travel Time (s)	7.3		5.3			29.8
	0.92	0.92	0.92	0.92	0.92	0.92
Peak Hour Factor Adj. Flow (vph)	0	23	1205	47	0	1802
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	0	23	1205	47	0	1802
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	0		12			12
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Sign Control	Stop		Free			Free

Intersection Summary \quad Other	
Area Type:	
Control Type: Unsignalized	
Intersection Capacity Utilization 90.6%	ICU Level of Service E
Analysis Period (min) 15	

Intersection Summary Other	
Area Type:	
Control Type: Unsignalized	
Intersection Capacity Utilization 35.9\%	ICU Level of Service A
Analysis Period (min) 15	

	7	4	\dagger	p		\dagger
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		F	\uparrow	「		\uparrow
Traffic Volume (vph)	0	32	995	50	0	1513
Future Volume (vph)	0	32	995	50	0	1513
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0		100	0	
Storage Lanes	0	1		1	0	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.865		0.850		
Flt Protected						
Satd. Flow (prot)	0	1611	1863	1583	0	1863
Flt Permitted						
Satd. Flow (perm)	0	1611	1863	1583	0	1863
Link Speed (mph)	30		45			45
Link Distance (ft)	166		248			1100
Travel Time (s)	3.8		3.8			16.7
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	35	1082	54	0	1645
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	0	35	1082	54	0	1645
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	0		8			8
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 83.0\% ICU Level of Service E						
Analysis Period (min) 15						

Intersection Summary Other	
Area Type:	
Control Type: Unsignalized	
Intersection Capacity Utilization 25.6\%	ICU Level of Service A
Analysis Period (min) 15	

	4		4	\uparrow		\downarrow
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	${ }_{7}$	「	${ }^{7}$	\uparrow	\uparrow	F'
Trafic Volume (vph)	3	4	13	1261	1099	10
Future Volume (vph)	3	4	13	1261	1099	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	50	100			100
Storage Lanes	1	1	1			1
Taper Length (ft)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.850				0.850
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1770	1583	1770	1863	1863	1583
Flt Permitted	0.950		0.950			
Satd. Flow (perm)	1770	1583	1770	1863	1863	1583
Link Speed (mph)	30			45	45	
Link Distance (ft)	783			1377	2673	
Travel Time (s)	17.8			20.9	40.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	3	4	14	1371	1195	11
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	3	4	14	1371	1195	11
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(t)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 76.4\%				ICU Level of Service D		
Analysis Period (min) 15						

	4	\rightarrow		4			4	4	\%			4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		*		${ }^{7}$	44		${ }^{7}$	1t	
Traffic Volume (vph)	29	0	124	15	0	18	77	1035	26	30	1562	1
Future Volume (vph)	29	0	124	15	0	18	77	1035	26	30	1562	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		100	0		0	0		0	700		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor								1.00		1.00		
Frt			0.850		0.925			0.996				
Flt Protected		0.950			0.978		0.950			0.950		
Satd. Flow (prot)	0	1719	1509	0	1719	0	1530	3364	0	1805	3406	0
Flt Permitted		0.734			0.887		0.950			0.950		
Satd. Flow (perm)	0	1328	1509	0	1559	0	1530	3364	0	1804	3406	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			135		119			3				
Link Speed (mph)		30			25			45			45	
Link Distance (ft)		731			393			430			1397	
Travel Time (s)		16.6			10.7			6.5			21.2	
Confl. Peds. (\#/hr)									1	1		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	5\%	0\%	7\%	0\%	0\%	0\%	18\%	7\%	0\%	0\%	6\%	0\%
Adj. Flow (vph)	32	0	135	16	0	20	84	1125	28	33	1698	1
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	32	135	0	36	0	84	1153	0	33	1699	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Right	Right
Median Width(ft)		0			0			24			30	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		1	0		1	2	
Detector Template	Left			Left			Left					
Leading Detector (ft)	20	29	29	20	29		34	0		29	306	
Trailing Detector (ft)	0	-5	-5	0	-5		0	0		-5	150	
Detector 1 Position(ft)	0	-5	-5	0	-5		0	0		-5	150	
Detector 1 Size(ft)	20	34	34	20	34		34	6		34	6	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	8.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)											300	
Detector 2 Size(ft)											6	
Detector 2 Type											Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)											0.0	

Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Ideal Flow (vphpl)
Storage Length (ft)
Storage Lanes
Taper Length (ft)
Lane Util. Factor
Ped Bike Factor
Frt
Flt Protected
Satd. Flow (prot)
Flt Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Confl. Peds. (\#/hr)
Peak Hour Factor
Heavy Vehicles (\%)
Adj. Flow (vph)
Shared Lane Traffic (\%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(ft)
Link Offset(ft)
Crosswalk Width(ft)
Two way Left Turn Lane
Headway Factor
Turning Speed (mph)
SFM 5
Number of Detectors
Detector Template
Leading Detector (ft)
Trailing Detector (ft)
Detector 1 Position(ft)
Detector 1 Size(ft)
Detector 1 Type
Detector 1 Channel
Detector 1 Extend (s)
Detector 1 Queue (s)
Detector 1 Delay (s)
Detector 2 Position(ft)
Detector 2 Size(ft)
Detector 2 Type
Detector 2 Channel
Detortond (s)

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA	Perm	Perm	NA		Prot	NA		Prot	NA	
Protected Phases		4			4		1	6		5	2	
Permitted Phases	4		4	4								
Detector Phase	4	4	4	4	4		1			5	2	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		5.0	15.0		5.0	15.0	
Minimum Split (s)	12.6	12.6	12.6	12.6	12.6		11.6	21.2		10.2	21.2	
Total Split (s)	22.5	22.5	22.5	22.5	22.5		17.0	45.5		22.0	50.5	
Total Split (\%)	25.0\%	25.0\%	25.0\%	25.0\%	25.0\%		18.9\%	50.6\%		24.4\%	56.1\%	
Maximum Green (s)	16.9	16.9	16.9	16.9	16.9		10.4	39.3		16.8	44.3	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0	4.8		3.0	4.8	
All-Red Time (s)	2.6	2.6	2.6	2.6	2.6		3.6	1.4		2.2	1.4	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		5.6	5.6		5.6		6.6	6.2		5.2	6.2	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5	1.5	1.5	1.5	1.5		1.5	2.5		1.5	2.5	
Recall Mode	None	None	None	None	None		None	C-Min		None	C-Min	
Walk Time (s)												

Flash Dont Walk (s)
Pedestrian Calls (\#hr)

Act Efft Green (s)		16.9	16.9		16.9	8.3	41.1	15.0	48.7
Actuated g/C Ratio		0.19	0.19		0.19	0.09	0.46	0.17	0.54
v/c Ratio		0.13	0.34		0.09	0.60	0.75	0.11	0.92
Control Delay		32.1	8.6		0.5	56.5	12.2	33.7	21.8
Queue Delay		0.0	0.0		0.0	0.0	0.2	0.0	0.0
Total Delay		32.1	8.6		0.5	56.5	12.4	33.7	21.8
LOS		C	A		A	E	B	C	C
Approach Delay		13.1			0.5		15.4		22.1
Approach LOS		B			A		B		C
90th \%ile Green (s)	16.9	16.9	16.9	16.9	16.9	10.4	39.3	16.8	44.3
90th \%ile Term Code	Hold	Hold	Hold	Hold	Hold	Max	Coord	Max	Coord
70th \%ile Green (s)	16.9	16.9	16.9	16.9	16.9	10.4	39.3	16.8	44.3
70th \%ile Term Code	Hold	Hold	Hold	Hold	Hold	Max	Coord	Max	Coord
50th \%ile Green (s)	16.9	16.9	16.9	16.9	16.9	8.8	39.3	16.8	45.9
50th \%ile Term Code	Hold	Hold	Hold	Hold	Hold	Gap	Coord	Max	Coord
30th \%ile Green (s)	16.9	16.9	16.9	16.9	16.9	7.1	41.9	14.2	47.6
30th \%ile Term Code	Hold	Hold	Hold	Hold	Hold	Gap	Coord	Gap	Coord
10th \%ile Green (s)	16.9	16.9	16.9	16.9	16.9	0.0	45.6	10.5	61.3
10th \%ile Term Code	Hold	Hold	Hold	Hold	Hold	Skip	Coord	Gap	Coord
Stops (vph)		25	20		0	77	340	25	1140
Fuel Used(gal)		0	1		0	2	10	1	35
CO Emissions (g/hr)		34	72		8	144	686	55	2468
NOx Emissions (g/hr)		7	14		2	28	134	11	480
VOC Emissions (g/hr)		8	17		2	33	159	13	572
Dilemma Vehicles (\#)		0	0		0	0	80	0	63
Queue Length 50th (tt)		15	0		0	52	90	15	415
Queue Length 95th (ft)		41	47		0	m72	128	m18	m\#668
Internal Link Dist (ft)		651			313		350		1317

Lane Group	$\varnothing 8$
Turn Type	
Protected Phases	8
Permitted Phases	
Detector Phase	
Switch Phase	
Minimum Initial (s)	5.0
Minimum Split (s)	22.5
Total Split (s)	22.5
Total Split (\%)	25\%
Maximum Green (s)	18.0
Yellow Time (s)	3.5
All-Red Time (s)	1.0
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
Vehicle Extension (s)	3.0
Recall Mode	None
Walk Time (s)	7.0
Flash Dont Walk (s)	11.0
Pedestrian Calls (\#/hr)	0
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
90th \%ile Green (s)	18.0
90th \%ile Term Code	Max
70th \%ile Green (s)	18.0
70th \%ile Term Code	Max
50 th \%ile Green (s)	18.0
50th \%ile Term Code	Max
30th \%ile Green (s)	18.0
30th \%ile Term Code	Max
10th \%ile Green (s)	18.0
10th \%ile Term Code	Hold
Stops (vph)	
Fuel Used(gal)	
CO Emissions (g/hr)	
NOx Emissions (g/hr)	
VOC Emissions (g/hr)	
Dilemma Vehicles (\#)	
Queue Length 50th (ft)	
Queue Length 95th (ft)	
Internal Link Dist (ft)	

Route 5 Study 04/17/2018 2040 AM Build Condition

	$\Rightarrow \quad \rightarrow$,	4	\%		\dagger	4
Lane Group EBL	EBL EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Bay Length (ft)		100							700		
Base Capacity (vph)	249	393		389		176	1536		336	1842	
Starvation Cap Reductn	0	0		0		0	61		0	0	
Spillback Cap Reductn	0	0		0		0	0		0	0	
Storage Cap Reductn	0	0		0		0	0		0	0	
Reduced v/c Ratio	0.13	0.34		0.09		0.48	0.78		0.10	0.92	
Intersection Summary											
Area Type: Other											
Cycle Length: 90											
Actuated Cycle Length: 90											
Offset: 0 (0\%), Referenced to phase 2:SBT and 6:NBTL, Start of Yellow											
Natural Cycle: 90											
Control Type: Actuated-Coordinated											
Maximum v/c Ratio: 0.92											
Intersection Signal Delay: 18.7				Intersection LOS: B							
Intersection Capacity Utilization 71.4\%				ICU Level of Service C							
Analysis Period (min) 15											
\# 95th percentile volume exceeds capacity, queue may be longer.											
Queue shown is maximum after two cycles.											
m Volume for 95 th percentile queue is	queue is metere	by upst	m sig								

Splits and Phases: 201: South Main St (Rt-5) \& Main St (Rt-510)/Prospect Hill Plaza

Lane Group $\quad \varnothing 8$
Turn Bay Length (ft)
Base Capacity (vped)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

Intersection Summary

Splits and Phases: 205: Phelps Rd (CT-191)

	4	\rightarrow		\checkmark			4	4			$\frac{1}{7}$	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	4	Tr		$4{ }^{4}$		${ }^{7}$	个F		${ }^{*}$	中4	「
Traffic Volume（vph）	176	307	1200	35	352	35	748	281	57	60	358	349
Future Volume（vph）	176	307	1200	35	352	35	748	281	57	60	358	349
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	350		290	0		200	400		0	205		130
Storage Lanes	1		2	0		1	2		0	2		1
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	0.95	0.95	0.88	0.95	0.95	0.95	0.97	0.95	0.95	1.00	0.95	1.00
Ped Bike Factor								1.00		1.00		
Frt			0.850		0.988			0.975				0.850
Flt Protected	0.950	0.997			0.996		0.950			0.950		
Satd．Flow（prot）	1603	1760	2733	0	3242	0	3273	3262	0	1703	3374	1583
Flt Permitted	0.950	0.997			0.996		0.950			0.950		
Satd．Flow（perm）	1603	1760	2733	0	3242	0	3273	3262	0	1698	3374	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			651		9			27				177
Link Speed（mph）		45			35			45			45	
Link Distance（ft）		734			813			1397			571	
Travel Time（s）		11.1			15.8			21.2			8.7	
Confl．Peds．（\＃／hr）									1	1		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	7\％	2\％	4\％	0\％	10\％	15\％	7\％	7\％	10\％	6\％	7\％	2\％
Adj．Flow（vph）	191	334	1304	38	383	38	813	305	62	65	389	379
Shared Lane Traffic（\％）	10\％											
Lane Group Flow（vph）	172	353	1304	0	459	0	813	367	0	65	389	379
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（ft）		33			12			32			24	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		1	2		1	2	0
Detector Template				Left								
Leading Detector（ft）	29	34	29	20	48		34	326		39	326	0
Trailing Detector（ft）	－5	0	－10	0	0		0	150		5	150	0
Detector 1 Position（ft）	－5	0	－10	0	0		0	150		5	150	0
Detector 1 Size（ft）	34	34	39	20	48		34	6		34	6	20
Detector 1 Type	Cl＋Ex	Cl＋Ex	Cl＋Ex	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$		Cl＋Ex	Cl＋Ex		Cl＋Ex	Cl＋Ex	Cl＋Ex
Detector 1 Channel												
Detector 1 Extend（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay（s）	0.0	0.0	8.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position（ft）								320			320	
Detector 2 Size（ft）								6			6	
Detector 2 Type								Cl＋Ex			Cl＋Ex	
Detector 2 Channel												
Detector 2 Extend（s）								0.0			0.0	

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Split	NA	pm+ov	Split	NA		Prot	NA		Prot	NA	pm+ov
Protected Phases	4	4	1	8	8		1	6		5	2	4
Permitted Phases			4								2	2
Detector Phase	4	4	4	8	8		1	6		5	2	2
Switch Phase												
Minimum Initial (s)	9.0	9.0	5.0	9.0	9.0		5.0	15.0		5.0	11.0	9.0
Minimum Split (s)	15.5	15.5	10.9	15.7	15.7		10.9	21.0		10.0	21.0	15.5
Total Split (s)	23.0	23.0	26.8	19.0	19.0		26.8	34.0		14.0	21.2	23.0
Total Split (\%)	25.6\%	25.6\%	29.8\%	21.1\%	21.1\%		29.8\%	37.8\%		15.6\%	23.6\%	25.6\%
Maximum Green (s)	16.5	16.5	20.9	12.3	12.3		20.9	28.0		9.0	15.2	16.5
Yellow Time (s)	3.3	3.3	3.0	4.1	4.1		3.0	4.8		3.0	4.8	3.3
All-Red Time (s)	3.2	3.2	2.9	2.6	2.6		2.9	1.2		2.0	1.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.5	6.5	5.9		6.7		5.9	6.0		5.0	6.0	6.5
Lead/Lag			Lead				Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	2.0	2.0	2.0		2.0	2.5		2.0	2.5	3.0
Recall Mode	None	None	None	None	None		None	C-Min		None	C-Min	None
Act Effct Green (s)	18.0	18.0	39.5		12.3		20.9	30.1		7.4	13.7	37.7
Actuated g/C Ratio	0.20	0.20	0.44		0.14		0.23	0.33		0.08	0.15	0.42
v/c Ratio	0.54	1.01	0.83		1.02		1.07	0.33		0.46	0.76	0.50
Control Delay	40.1	88.6	11.7		87.0		69.7	22.3		49.7	45.4	9.8
Queue Delay	0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	40.1	88.6	11.7		87.0		69.7	22.3		49.7	45.4	9.8
LOS	D	F	B		F		E	C		D	D	A
Approach Delay		29.2			87.0			54.9			29.6	
Approach LOS		C			F			D			C	
90th \%ile Green (s)	16.5	16.5	20.9	12.3	12.3		20.9	28.0		9.0	15.2	16.5
90th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	Max
70th \%ile Green (s)	16.5	16.5	20.9	12.3	12.3		20.9	28.0		9.0	15.2	16.5
70th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	Max
50th \%ile Green (s)	16.8	16.8	20.9	12.3	12.3		20.9	29.0		7.7	14.9	16.8
50th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Gap	Coord	Max
30th \%ile Green (s)	19.4	19.4	20.9	12.3	12.3		20.9	27.8		6.3	12.3	19.4
30th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Gap	Coord	Max
10th \%ile Green (s)	20.7	20.7	20.9	12.3	12.3		20.9	37.8		0.0	11.0	20.7
10th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Skip	Coord	Max
Stops (vph)	141	259	543		357		668	309		57	317	156
Fuel Used(gal)	4	11	15		13		26	8		2	9	4
CO Emissions (g/hr)	265	743	1071		883		1797	590		108	600	275
NOx Emissions (g/hr)	52	145	208		172		350	115		21	117	53
VOC Emissions (g/hr)	61	172	248		205		416	137		25	139	64
Dilemma Vehicles (\#)	0	15	0		21		0	1		0	29	0
Queue Length 50th (ft)	94	~237	73		~140		~279	112		37	94	53
Queue Length 95th (ft)	165	\#416	131		\#244		\#397	m151		m74	145	32
Internal Link Dist (ft)		654			733			1317			491	
Turn Bay Length (ft)	350		290				400			205		130
Base Capacity (vph)	320	351	1564		450		760	1111		170	569	728
Starvation Cap Reductn	0	0	0		0		0	0		0	0	0

[^7]
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 209: I-91 Access/Egress/Newberry Rd

	4	\rightarrow		7			4	\dagger	p		\dagger	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	44	「	${ }^{7}$	㤽		${ }^{4} 1$	4	「	${ }^{7}$	F	
Traffic Volume（vph）	236	370	117	142	898	144	207	243	40	69	276	90
Future Volume（vph）	236	370	117	142	898	144	207	243	40	69	276	90
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width（ft）	11	11	11	11	11	11	10	11	12	11	12	12
Storage Length（ft）	0		0	260		475	300		200	200		0
Storage Lanes	1		1	1		1	2		1	1		0
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	0.95	0.97	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor									0.99	1.00		
Frt			0.850		0.979				0.850		0.963	
Fit Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1558	3172	1516	1504	3268	0	3083	1640	1442	1517	1610	0
Flt Permitted	0.136			0.480			0.950			0.950		
Satd．Flow（perm）	223	3172	1516	760	3268	0	3083	1640	1423	1513	1610	0
Right Turn on Red			No			No			No			No
Satd．Flow（RTOR）												
Link Speed（mph）		35			45			45			45	
Link Distance（ft）		381			922			908			517	
Travel Time（s）		7.4			14.0			13.8			7.8	
Confl．Peds．（\＃／hr）									1	1		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	12\％	10\％	3\％	16\％	4\％	8\％	6\％	12\％	12\％	15\％	8\％	31\％
Adj．Flow（vph）	257	402	127	154	976	157	225	264	43	75	300	98
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	257	402	127	154	1133	0	225	264	43	75	398	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（ft）		11			11			20			20	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.09	1.04	1.00	1.04	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		12	15		12
Number of Detectors	1	1	0	1	1		1	1	1	1	1	
Detector Template												
Leading Detector（ft）	29	256	0	30	315		29	29	29	29	29	
Trailing Detector（ft）	－5	250	0	－5	310		－5	－5	－5	－5	－5	
Detector 1 Position（ft）	－5	250	0	－5	310		－5	－5	－5	－5	－5	
Detector 1 Size（ft）	34	6	20	35	5		34	34	34	34	34	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex		$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Turn Type	pm＋pt	NA	pm＋ov	pm＋pt	NA		Prot	NA	pm＋ov	Prot	NA	
Protected Phases	5	2	3	1	6		3	8	1	7	4	
Permitted Phases	2		2	6					8			
Detector Phase	5	2	2	1	6		3	8	8	7	4	

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
SBR											
Switch Phase											
Minimum Initial (s)	6.0	15.0	4.0	6.0	15.0		4.0	9.0	6.0	4.0	5.0
Minimum Split (s)	11.8	20.5	8.0	12.6	20.5		8.0	15.8	12.6	8.0	11.8
Total Split (s)	16.0	33.9	11.0	17.2	35.1		11.0	27.9	17.2	11.0	27.9
Total Split (\%)	17.8%	37.7%	12.2%	19.1%	39.0%	12.2%	31.0%	19.1%	12.2%	31.0%	
Maximum Green (s)	10.2	28.4	7.0	10.6	29.6		7.0	21.1	10.6	7.0	21.1
Yellow Time (s)	3.0	4.5	3.0	3.0	4.5	3.0	4.4	3.0	3.0	4.4	
All-Red Time e s)	2.8	1.0	1.0	3.6	1.0	1.0	2.4	3.6	1.0	2.4	
Lost Time Ajjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.8	5.5	4.0	6.6	5.5	4.0	6.8	6.6	4.0	6.8	
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lead	Lag	Lead	Lead	Lag	

Vehicle Extension (s)	1.5	4.0	1.5	1.5	4.0	1.5	2.5	1.5	1.5	2.5
Recall Mode	None	C-Min	None	None	C-Min	None	None	None	None	None
Act Effct Green (s)	40.1	30.2	42.7	37.3	29.6	7.0	23.3	32.3	6.6	21.1
Actuated g/C Ratio	0.45	0.34	0.47	0.41	0.33	0.08	0.26	0.36	0.07	0.23
v/c Ratio	1.03	0.38	0.18	0.40	1.05	0.94	0.62	0.08	0.68	1.06
Control Delay	89.2	28.8	15.9	16.5	74.1	95.7	36.0	13.9	71.7	97.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	89.2	28.8	15.9	16.5	74.1	95.7	36.0	13.9	71.7	97.3
LOS	F	C	B	B	E	F	D	B	E	F
Approach Delay		46.5			67.2		59.5			93.3
Approach LOS		D			E		E			F
90th \%ile Green (s)	10.2	28.4	7.0	10.6	29.6	7.0	21.1	10.6	7.0	21.1
90th \%ile Term Code	Max	Coord	Max	Max	Coord	Max	Max	Max	Max	Max
70th \%ile Green (s)	10.2	28.4	7.0	10.6	29.6	7.0	21.1	10.6	7.0	21.1
70th \%ile Term Code	Max	Coord	Max	Max	Coord	Max	Max	Max	Max	Max
50th \%ile Green (s)	10.2	29.9	7.0	9.1	29.6	7.0	21.1	9.1	7.0	21.1
50th \%ile Term Code	Max	Coord	Max	Gap	Coord	Max	Hold	Gap	Max	Max
30th \%ile Green (s)	10.2	31.4	7.0	7.6	29.6	7.0	21.1	7.6	7.0	21.1
30th \%ile Term Code	Max	Coord	Max	Gap	Coord	Max	Hold	Gap	Max	Max
10th \%ile Green (s)	10.2	33.0	7.0	6.0	29.6	7.0	32.1	6.0	0.0	21.1
10th \%ile Term Code	Max	Coord	Max	Min	Coord	Max	Hold	Min	Skip	Max
Stops (vph)	152	313	67	84	899	182	193	22	62	304
Fuel Used(gal)	6	6	1	2	33	8	6	1	2	12
CO Emissions (g/hr)	425	387	84	166	2315	525	392	44	140	857
NOX Emissions (g/hr)	83	75	16	32	451	102	76	8	27	167
VOC Emissions (g/hr)	99	90	20	38	537	122	91	10	33	199
Dilemma Vehicles (\#)	0	15	0	0	52	0	22	0	0	17
Queue Length 50th (ft)	~99	109	43	47	~ 374	67	123	9	42	~ 250
Queue Length 95th (ft)	\#269	134	80	84	\#501	\#141	\#248	33	\#108	\#426
Internal Link Dist (ft)		301			842		828			437
Turn Bay Length (tt)				260		300		200	200	
Base Capacity (vph)	250	1064	719	417	1074	239	424	512	117	377
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.03	0.38	0.18	0.37	1.05	0.94	0.62	0.08	0.64	1.06

Intersection Summary

Splits and Phases: 210: N Rd. (CT-140)/N Rd. (CT140)

	\rangle						4	\dagger	7	V		4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			「		\ddagger			1F			${ }^{\text {¢ }}$ ¢	
Traffic Volume (vph)	0	0	3	346	0	14	0	1260	44	28	1072	3
Future Volume (vph)	0	0	3	346	0	14	0	1260	44	28	1072	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95
Frt			0.865		0.995			0.995				
Flt Protected					0.954						0.999	
Satd. Flow (prot)	0	0	1096	0	1779	0	0	3334	0	0	3338	0
Flt Permitted					0.954						0.877	
Satd. Flow (perm)	0	0	1096	0	1779	0	0	3334	0	0	2930	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			80		33			7				
Link Speed (mph)		30			30			50			45	
Link Distance (ft)		417			1615			1146			576	
Travel Time (s)		9.5			36.7			15.6			8.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	50\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	0\%	0\%	50\%	1\%	0\%	11\%	14\%	8\%	0\%	6\%	8\%	50\%
Adj. Flow (vph)	0	0	3	376	0	15	0	1370	48	30	1165	3
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	0	3	0	391	0	0	1418	0	0	1198	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			26			26	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors			0	1	1			0		1	0	
Detector Template				Left						Left		
Leading Detector (ft)			0	20	25			0		20	0	
Trailing Detector (ft)			0	0	0			0		0	0	
Detector 1 Position(ft)			0	0	0			0		0	0	
Detector 1 Size(ft)			20	20	25			0		20	0	
Detector 1 Type			Extend	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)			0.0	0.0	0.0			0.0		0.0	0.0	
Detector 1 Queue (s)			0.0	0.0	0.0			0.0		0.0	0.0	
Detector 1 Delay (s)			0.0	0.0	0.0			0.0		0.0	0.0	
Turn Type			Perm	Perm	NA			NA		Perm	NA	
Protected Phases					4			2			2	
Permitted Phases			4	4						2		
Detector Phase			4	4	4							
Switch Phase												
Minimum Initial (s)			9.0	9.0	9.0			15.0		15.0	15.0	
Minimum Split (s)			13.0	13.0	13.0			20.7		20.7	20.7	
Total Split (s)			31.0	31.0	31.0			59.0		59.0	59.0	
Total Split (\%)			34.4\%	34.4\%	34.4\%			65.6\%		65.6\%	65.6\%	

Natural Cycle: 50
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.83
Intersection Signal Delay: $15.4 \quad$ Intersection LOS: B
Intersection Capacity Utilization 78.0\% ICU Level of Service D
Analysis Period (min) 15
Splits and Phases: 211: Crow Park Rd / Scantic Rd

	\rangle	\rightarrow		7			4	\dagger	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\uparrow	F	\%	\uparrow		\%	\uparrow	
Trafic Volume (vph)	25	13	14	22	53	188	17	939	58	162	1466	30
Future Volume (vph)	25	13	14	22	53	188	17	939	58	162	1466	30
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	8	12	12	12	12	12	12
Storage Length (ft)	0		80	0		30	120		0	200		0
Storage Lanes	0		1	0		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00	0.97		1.00							
Frt			0.850			0.850		0.991			0.997	
Flt Protected		0.968			0.986		0.950			0.950		
Satd. Flow (prot)	0	1758	1313	0	1873	1400	1703	1713	0	1687	1803	0
Flt Permitted		0.752			0.887		0.083			0.076		
Satd. Flow (perm)	0	1361	1279	0	1683	1400	149	1713	0	135	1803	0
Right Turn on Red			No			Yes			Yes			Yes
Satd. Flow (RTOR)						204		4			1	
Link Speed (mph)		25			35			45			45	
Link Distance (ft)		551			479			2227			349	
Travel Time (s)		15.0			9.3			33.7			5.3	
Confl. Peds. (\#/hr)	1		1	1								
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	7\%	0\%	23\%	0\%	0\%	0\%	6\%	9\%	25\%	7\%	5\%	7\%
Adj. Flow (vph)	27	14	15	24	58	204	18	1021	63	176	1593	33
Shared Lane Trafic (\%)												
Lane Group Flow (vph)	0	41	15	0	82	204	18	1084	0	176	1626	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.20	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1	1	1	3		1	3	
Detector Template	Left			Left								
Leading Detector (ft)	20	20	15	20	25	20	33	326		33	326	
Trailing Detector (t)	0	0	0	0	0	0	-5	0		-5	0	
Detector 1 Position(ft)	0	0	0	0	0	0	-5	0		-5	0	
Detector 1 Size(tt)	20	20	15	20	25	20	38	6		38	6	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$								
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	2.0	8.0	0.0	8.0	8.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)								144			94	
Detector 2 Size(ft)								6			6	
Detector 2 Type								Cl+Ex			Cl+Ex	
Detector 2 Channel												

Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Ideal Flow (vphpl)
Lane Width (ft)
Storage Length (ft)
Storage Lanes
Taper Length (ft)
Lane Util. Factor
Ped Bike Factor
Frt
Flt Protected
Satd. Flow (prot)
Flt Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Confl. Peds. (\#/hr)
Peak Hour Factor
Heavy Vehicles (\%)
Adj. Flow (vph)
Shared Lane Traffic (\%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(ft)
Link Offset(ft)
Crosswalk Width(ft)
Two way Left Turn Lane
Headway Factor
Turning Speed (mph)
Number of Detectors
Detector Template
Leading Detector (ft)
Trailing Detector (ft)
Detector 1 Position(ft)
Detector 1 Size(ft)
Detector 1 Type
Detector 1 Channel
Detector 1 Extend (s)
Detector 1 Queue (s)
Detector 1 Delay (s)
Detector 2 Position(ft)
Detector 2 Size(ft)
Detector 2 Type
Detector 2 Channel

	\rangle						4	4	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Extend (s)								0.0			0.0	
Detector 3 Position(ft)								320			320	
Detector 3 Size(ft)								6			6	
Detector 3 Type								Cl+Ex			Cl+Ex	
Detector 3 Channel												
Detector 3 Extend (s)								0.0			0.0	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases		4			4		5	2		1	,	
Permitted Phases	4		4	4		4	2			6		
Detector Phase	4	4	4	4	4	4	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	4.0	15.0		5.0	15.0	
Minimum Split (s)	9.5	9.5	9.5	9.5	9.5	9.5	8.0	22.8		9.0	22.8	
Total Split (s)	12.0	12.0	12.0	12.0	12.0	12.0	8.0	48.0		8.0	48.0	
Total Split (\%)	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	8.9\%	53.3\%		8.9\%	53.3\%	
Maximum Green (s)	7.5	7.5	7.5	7.5	7.5	7.5	5.0	40.2		4.0	40.2	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	2.0	4.8		3.0	4.8	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.0	3.0		1.0	3.0	
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.5	4.5		4.5	4.5	3.0	7.8		4.0	7.8	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0	2.0	1.5	2.5		1.5	2.5	
Recall Mode	None	C-Min		None	C-Min							
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (\#hr)												
Act Effct Green (s)		7.0	7.0		7.0	7.0	60.8	51.6		70.1	63.6	
Actuated g/C Ratio		0.08	0.08		0.08	0.08	0.68	0.57		0.78	0.71	
v/c Ratio		0.39	0.15		0.63	0.69	0.10	1.10		0.60	1.28	
Control Delay		50.3	42.1		61.8	19.1	1.7	63.0		22.9	139.5	
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		50.3	42.1		61.8	19.1	1.7	63.0		22.9	139.5	
LOS		D	D		E	B	A	E		C	F	
Approach Delay		48.1			31.4			62.0			128.1	
Approach LOS		D			C			E			F	
90th \%ile Green (s)	7.5	7.5	7.5	7.5	7.5	7.5	5.2	40.2		6.0	42.0	
90th \%ile Term Code	Max	Max	Max	Max	Max	Max	Gap	Coord		Max	Coord	
70th \%ile Green (s)	7.5	7.5	7.5	7.5	7.5	7.5	4.3	53.8		12.4	62.9	
70th \%ile Term Code	Max	Max	Max	Max	Max	Max	Gap	Coord		Gap	Coord	
50th \%ile Green (s)	7.5	7.5	7.5	7.5	7.5	7.5	0.0	54.5		11.7	70.2	
50th \%ile Term Code	Max	Max	Max	Max	Max	Max	Skip	Coord		Gap	Coord	
30th \%ile Green (s)	7.4	7.4	7.4	7.4	7.4	7.4	0.0	54.8		11.5	70.3	
30th \%ile Term Code	Gap	Gap	Gap	Gap	Gap	Gap	Skip	Coord		Gap	Coord	
10th \%ile Green (s)	5.1	5.1	5.1	5.1	5.1	5.1	0.0	54.9		13.7	72.6	
10th \%ile Term Code	Gap	Gap	Gap	Gap	Gap	Gap	Skip	Coord		Gap	Coord	
Stops (vph)		37	15		69	29	2	589		111	760	
Fuel Used(gal)		1	0		2	2	0	42		3	55	
CO Emissions (g/hr)		50	17		120	112	28	2911		175	3867	

4							\dagger	p		\downarrow	\downarrow
Lane Group EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
NOx Emissions (g/hr)	10	3		23	22	5	566		34	752	
VOC Emissions (g/hr)	11	4		28	26	6	675		41	896	
Dilemma Vehicles (\#)	0	0		4	0	0	4		0	8	
Queue Length 50th (tt)	22	8		46	0	1	~ 681		34	-1152	
Queue Length 95th (ft)	56	28		\#105	\#82	m1	m\#857		m35	\#1103	
Internal Link Dist (t)	471			399			2147			269	
Turn Bay Length (ft)		80			30	120			200		
Base Capacity (vph)	113	106		140	303	188	984		295	1274	
Starvation Cap Reductn	0	0		0	0	0	0		0	0	
Spillback Cap Reductn	0	0		0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0		0	0	
Reduced v/c Ratio	0.36	0.14		0.59	0.67	0.10	1.10		0.60	1.28	
Intersection Summary											
Area Type: Other											
Cycle Length: 90											
Actuated Cycle Length: 90											
Offset: 36 (40\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow											
Natural Cycle: 150											
Control Type: Actuated-Coordinated											
Maximum v/c Ratio: 1.28											
Intersection Signal Delay: 95.7				Intersection LOS: F							
Intersection Capacity Utilization 106.6\%				ICU Level of Service G							
Analysis Period (min) 15											
~ Volume exceeds capacity, queue is theoretically infinite.											
Queue shown is maximum after two cycles.											
\# 95th percentile volume exceeds capacity, queue may be longer.											
Queue shown is maximum after two cycles.											
m Volume for 95th percentile queue is	metere	by ups	am sig								

Splits and Phases: 213: Tromley Rd

Lane Group $\quad \emptyset 3$
NOx Emissions (g/hr)
VOC Emissions (g/hr)
Dilemma Vehicles (\#)
Queue Length 50th (ft)
Queue Length 95th (ft)
Internal Link Dist (ft)
Turn Bay Length (ft)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\uparrow		\%	F			*	F
Traffic Volume (vph)	64	6	79	12	10	7	49	1211	4	7	1018	102
Future Volume (vph)	64	6	79	12	10	7	49	1211	4	7	1018	102
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	8	12	12	12	8	12	12	8	12	8
Storage Length (ft)	0		30	0		0	50		0	0		50
Storage Lanes	0		1	0		0	1		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.966							0.850
Flt Protected		0.957			0.980		0.950					
Satd. Flow (prot)	0	1667	1386	0	1725	0	1384	1776	0	0	1754	1386
Flt Permitted		0.722			0.834		0.187				0.990	
Satd. Flow (perm)	0	1257	1386	0	1468	0	273	1776	0	0	1737	1386
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			86		8			1				60
Link Speed (mph)		25			35			45			45	
Link Distance (ft)		801			1499			2673			1892	
Travel Time (s)		21.8			29.2			40.5			28.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	10\%	0\%	1\%	0\%	0\%	17\%	13\%	7\%	0\%	50\%	8\%	1\%
Adj. Flow (vph)	70	7	86	13	11	8	53	1316	4	8	1107	111

Shared Lane Traffic (\%)

Lane Group Flow (vph)	0	77	86	0	32	0	53	1320	0	0	1115	111
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		10			0			8			8	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.20	1.00	1.00	1.00	1.20	1.00	1.00	1.20	1.00	1.20
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		0	0		0	0	1
Detector Template	Left		Right	Left								Right
Leading Detector (ft)	20	20	20	20	29		0	0		0	0	20
Trailing Detector (ft)	0	0	0	0	-5		0	0		0	0	0
Detector 1 Position(ft)	0	0	0	0	-5		0	0		0	0	0
Detector 1 Size(ft)	20	20	20	20	34		20	6		20	6	20
Detector 1 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases		4			4			2				

Permitted Phases	4		4	4		2	2	2
Detector Phase	4	4	4	4	4		2	
Switch Phase								

Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	15.0	15.0	15.0	15.0	15.0

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	9.3	9.3	9.3	9.3	9.3		22.0	22.0		22.0	22.0	22.0
Total Split (s)	11.0	11.0	11.0	11.0	11.0		79.0	79.0		79.0	79.0	79.0
Total Split (\%)	12.2\%	12.2\%	12.2\%	12.2\%	12.2\%		87.8\%	87.8\%		87.8\%	87.8\%	87.8\%
Maximum Green (s)	6.7	6.7	6.7	6.7	6.7		72.0	72.0		72.0	72.0	72.0
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		4.8	4.8		4.8	4.8	4.8
All-Red Time (s)	1.3	1.3	1.3	1.3	1.3		2.2	2.2		2.2	2.2	2.2
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)		4.3	4.3		4.3		7.0	7.0			7.0	7.0
Lead/Lag	Lag	Lag	Lag	Lag	Lag		Lead	Lead		Lead	Lead	Lead
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5	1.5	1.5	1.5	1.5		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None	None	None	None		C-Max	C-Max		C-Max	C-Max	C-Max
Act Effct Green (s)		6.6	6.6		6.6		72.1	72.1			72.1	72.1
Actuated g/C Ratio		0.07	0.07		0.07		0.80	0.80			0.80	0.80
v/c Ratio		0.84	0.48		0.28		0.24	0.93			0.80	0.10
Control Delay		101.6	18.7		38.6		4.8	27.5			11.1	1.5
Queue Delay		0.0	0.0		0.0		0.0	0.0			0.0	0.0
Total Delay		101.6	18.7		38.6		4.8	27.5			11.1	1.5
LOS		F	B		D		A	C			B	A
Approach Delay		57.8			38.6			26.6			10.2	
Approach LOS		E			D			C			B	
90th \%ile Green (s)	6.7	6.7	6.7	6.7	6.7		72.0	72.0		72.0	72.0	72.0
90th \%ile Term Code	Max	Max	Max	Max	Max		Coord	Coord		Coord	Coord	Coord
70th \%ile Green (s)	6.7	6.7	6.7	6.7	6.7		72.0	72.0		72.0	72.0	72.0
70th \%ile Term Code	Max	Max	Max	Max	Max		Coord	Coord		Coord	Coord	Coord
50th \%ile Green (s)	6.7	6.7	6.7	6.7	6.7		72.0	72.0		72.0	72.0	72.0
50th \%ile Term Code	Max	Max	Max	Max	Max		Coord	Coord		Coord	Coord	Coord
30th \%ile Green (s)	6.7	6.7	6.7	6.7	6.7		72.0	72.0		72.0	72.0	72.0
30th \%ile Term Code	Max	Max	Max	Max	Max		Coord	Coord		Coord	Coord	Coord
10th \%ile Green (s)	6.3	6.3	6.3	6.3	6.3		72.4	72.4		72.4	72.4	72.4
10th \%ile Term Code	Gap	Gap	Gap	Gap	Gap		Coord	Coord		Coord	Coord	Coord
Stops (vph)		58	19		24		11	671			645	14
Fuel Used(gal)		2	1		1		1	36			23	1
CO Emissions (g/hr)		152	64		50		72	2531			1603	102
NOx Emissions (g/hr)		30	12		10		14	492			312	20
VOC Emissions (g/hr)		35	15		12		17	587			372	24
Dilemma Vehicles (\#)		0	0		2		0	78			67	0
Queue Length 50th (ft)		44	0		13		5	513			438	7
Queue Length 95th (ft)		\#125	44		42		m13	\#600			m593	m10
Internal Link Dist (ft)		721			1419			2593			1812	
Turn Bay Length (ft)			30				50					50
Base Capacity (vph)		93	182		116		218	1422			1391	1121
Starvation Cap Reductn		0	0		0		0	0			0	0
Spillback Cap Reductn		0	0		0		0	0			0	0
Storage Cap Reductn		0	0		0		0	0			0	0
Reduced v/c Ratio		0.83	0.47		0.28		0.24	0.93			0.80	0.10

Intersection Summary

Area Type: Other

Cycle Length: 90
Actuated Cycle Length: 90
Offset: 84 (93%), Referenced to phase 2:NBSB, Start of Yellow
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.93
Intersection Signal Delay: 21.4 Intersection LOS: C

Intersection Capacity Utilization 95.9\% ICU Level of Service F
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 214: DD/Abbe Rd

	4						4	4	\%	V		4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\&		${ }^{7}$	\uparrow		${ }^{7}$	F	
Traffic Volume (vph)	30	5	136	5	5	6	96	1037	2	5	1519	18
Future Volume (vph)	30	5	136	5	5	6	96	1037	2	5	1519	18
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		300	0		0	150		0	320		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.944						0.998	
Flt Protected		0.958			0.986		0.950			0.950		
Satd. Flow (prot)	0	1820	1599	0	1768	0	1719	1759	0	1805	1774	0
Flt Permitted		0.747			0.887		0.059			0.154		
Satd. Flow (perm)	0	1419	1599	0	1591	0	107	1759	0	293	1774	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			123		7						2	
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		1143			286			1965			934	
Travel Time (s)		26.0			6.5			29.8			14.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	0\%	1\%	0\%	0\%	0\%	5\%	8\%	0\%	0\%	7\%	0\%
Adj. Flow (vph)	33	5	148	5	5	7	104	1127	2	5	1651	20
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	38	148	0	17	0	104	1129	0	5	1671	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		1	0		1	0	
Detector Template	Left		Right	Left								
Leading Detector (ft)	20	45	20	20	45		15	0		15	0	
Trailing Detector (ft)	0	-5	0	0	-5		-5	0		-5	0	
Detector 1 Position(ft)	0	-5	0	0	-5		-5	0		-5	0	
Detector 1 Size(ft)	20	50	20	20	50		20	6		20	6	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	Perm	NA	Perm	Perm	NA		pm+pt	NA		pm+pt	NA	
Protected Phases		4			4		1	6		5	2	
Permitted Phases	4		4	4			6			2		
Detector Phase	4	4	4	4	4		1			5		
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	15.0		5.0	15.0	
Minimum Split (s)	10.1	10.1	10.1	10.1	10.1		9.0	22.3		9.0	22.3	

	\rangle	\rightarrow		\downarrow			4	\uparrow	p		\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	10.1	10.1	10.1	10.1	10.1		9.0	70.9		9.0	70.9	
Total Split (\%)	11.2\%	11.2\%	11.2\%	11.2\%	11.2\%		10.0\%	78.8\%		10.0\%	78.8\%	
Maximum Green (s)	5.0	5.0	5.0	5.0	5.0		5.0	63.6		5.0	63.6	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.0	4.8		3.0	4.8	
All-Red Time (s)	1.8	1.8	1.8	1.8	1.8		1.0	2.5		1.0	2.5	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		5.1	5.1		5.1		4.0	7.3		4.0	7.3	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5	1.5	1.5	1.5	1.5		1.5	3.0		1.5	3.0	
Recall Mode	None	None	None	None	None		None	C-Max		None	C-Max	
Act Efft Green (s)		5.0	5.0		5.0		75.1	70.8		72.7	65.4	
Actuated g/C Ratio		0.06	0.06		0.06		0.83	0.79		0.81	0.73	
v / C Ratio		0.49	0.72		0.18		0.58	0.82		0.02	1.30	
Control Delay		62.9	32.9		35.3		24.4	5.7		2.2	161.4	
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Delay		62.9	32.9		35.3		24.4	5.7		2.2	161.4	
LOS		E	C		D		C	A		A	F	
Approach Delay		39.0			35.3			7.3			161.0	
Approach LOS		D			D			A			F	
90th \%ile Green (s)	5.0	5.0	5.0	5.0	5.0		5.0	63.6		5.0	63.6	
90th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	
70th \%ile Green (s)	5.0	5.0	5.0	5.0	5.0		5.0	72.6		0.0	63.6	
70th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Skip	Coord	
50th \%ile Green (s)	5.0	5.0	5.0	5.0	5.0		5.0	72.6		0.0	63.6	
50th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Skip	Coord	
30th \%ile Green (s)	5.0	5.0	5.0	5.0	5.0		5.0	72.6		0.0	63.6	
30th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Skip	Coord	
10th \%ile Green (s)	5.0	5.0	5.0	5.0	5.0		0.0	72.6		0.0	72.6	
10th \%ile Term Code	Max	Max	Max	Max	Max		Skip	Coord		Skip	Coord	
Stops (vph)		33	33		13		84	137		2	1099	
Fuel Used(gal)		1	2		0		3	16		0	74	
CO Emissions (g/hr)		66	161		16		192	1130		4	5138	
NOx Emissions (g/hr)		13	31		3		37	220		1	1000	
VOC Emissions (g/hr)		15	37		4		44	262		1	1191	
Dilemma Vehicles (\#)		0	0		0		0	15		0	118	
Queue Length 50th (ft)		21	14		6		16	19		,	~1224	
Queue Length 95th (ft)		\#63	\#103		27		m25	m90		m1	\#1488	
Internal Link Dist (tt)		1063			206			1885			854	
Turn Bay Length (ft)			300				150			320		
Base Capacity (vph)		78	205		95		178	1383		321	1289	
Starvation Cap Reductn		0	0		0		0	0		0	0	
Spillback Cap Reductn		0	0		0		0	0		0	0	
Storage Cap Reductn		0	0		0		0	0		0	0	
Reduced v/c Ratio		0.49	0.72		0.18		0.58	0.82		0.02	1.30	
Intersection Summary												
Area Type: Cycle Length: 90	Other											

Actuated Cycle Length: 90
Offset: 86 (96%), Referenced to phase 2:SBTL and 6:NBTL, Start of Yellow
Natural Cycle: 150
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.30
Intersection Signal Delay: $92.1 \quad$ Intersection LOS: F
Intersection Capacity Utilization 108.2\% ICU Level of Service G
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 215: S Water St

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\$	「	\%	\uparrow		${ }^{*}$	F	
Traffic Volume (vph)	4	2	2	63	0	31	5	1220	57	14	1062	1
Future Volume (vph)	4	2	2	63	0	31	5	1220	57	14	1062	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	8	8	12	12	8	12	12
Storage Length (ft)	0		0	0		50	50		0	50		0
Storage Lanes	0		0	0		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.99			0.99	0.97						
Frt		0.966				0.850		0.993				
Flt Protected		0.976			0.950		0.950			0.950		
Satd. Flow (prot)	0	1778	0	0	1612	1400	1564	1746	0	1448	1776	0
Flt Permitted		0.810			0.800		0.186			0.081		
Satd. Flow (perm)	0	1470	0	0	1345	1359	306	1746	0	124	1776	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2				41		11				
Link Speed (mph)		30			35			45			45	
Link Distance (ft)		411			816			1892			693	
Travel Time (s)		9.3			15.9			28.7			10.5	
Confl. Peds. (\#/hr)	1		1	1		1						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	0\%	0\%	12\%	0\%	0\%	0\%	8\%	9\%	8\%	7\%	0\%
Adj. Flow (vph)	4	2	2	68	0	34	5	1326	62	15	1154	1
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	8	0	0	68	34	5	1388	0	15	1155	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			8			8	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.00	1.00	1.20	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1	1	0	0		0	0	
Detector Template	Left			Left		Right						
Leading Detector (ft)	20	12		20	36	20	0	0		0	0	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	12		20	36	20	20	36		20	6	
Detector 1 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		4			4			2			2	
Permitted Phases	4			4		4	2			2		
Detector Phase	4	4		4	4	4						

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	15.0	15.0		15.0	15.0	
Minimum Split (s)	9.0	9.0		9.0	9.0	9.0	21.4	21.4		21.4	21.4	
Total Split (s)	9.0	9.0		9.0	9.0	9.0	81.0	81.0		81.0	81.0	
Total Split (\%)	10.0\%	10.0\%		10.0\%	10.0\%	10.0\%	90.0\%	90.0\%		90.0\%	90.0\%	
Maximum Green (s)	5.0	5.0		5.0	5.0	5.0	74.6	74.6		74.6	74.6	
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	4.8	4.8		4.8	4.8	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.6	1.6		1.6	1.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.0			4.0	4.0	6.4	6.4		6.4	6.4	
Lead/Lag	Lag	Lag		Lag	Lag	Lag	Lead	Lead		Lead	Lead	
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5	1.5		1.5	1.5	1.5	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	C-Max	C-Max		C-Max	C-Max	
Act Effct Green (s)		5.0			5.0	5.0	74.6	74.6		74.6	74.6	
Actuated g/C Ratio		0.06			0.06	0.06	0.83	0.83		0.83	0.83	
v/c Ratio		0.10			0.92	0.30	0.02	0.96		0.15	0.78	
Control Delay		38.7			130.2	18.3	0.4	11.5		1.3	2.4	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		38.7			130.2	18.3	0.4	11.5		1.3	2.4	
LOS		D			F	B	A	B		A	A	
Approach Delay		38.7			92.9			11.5			2.3	
Approach LOS		D			F			B			A	
90th \%ile Green (s)	5.0	5.0		5.0	5.0	5.0	74.6	74.6		74.6	74.6	
90th \%ile Term Code	Max	Max		Max	Max	Max	Coord	Coord		Coord	Coord	
70th \%ile Green (s)	5.0	5.0		5.0	5.0	5.0	74.6	74.6		74.6	74.6	
70th \%ile Term Code	Max	Max		Max	Max	Max	Coord	Coord		Coord	Coord	
50th \%ile Green (s)	5.0	5.0		5.0	5.0	5.0	74.6	74.6		74.6	74.6	
50th \%ile Term Code	Max	Max		Max	Max	Max	Coord	Coord		Coord	Coord	
30th \%ile Green (s)	5.0	5.0		5.0	5.0	5.0	74.6	74.6		74.6	74.6	
30th \%ile Term Code	Max	Max		Max	Max	Max	Coord	Coord		Coord	Coord	
10th \%ile Green (s)	5.0	5.0		5.0	5.0	5.0	74.6	74.6		74.6	74.6	
10th \%ile Term Code	Max	Max		Max	Max	Max	Coord	Coord		Coord	Coord	
Stops (vph)		8			48	9	0	89		0	70	
Fuel Used(gal)		0			2	0	0	20		0	10	
CO Emissions (g/hr)		9			168	26	4	1383		9	714	
NOx Emissions (g/hr)		2			33	5	1	269		2	139	
VOC Emissions (g/hr)		2			39	6	1	321		2	165	
Dilemma Vehicles (\#)		0			3	0	0	28		0	13	
Queue Length 50th (ft)		3			39	0	0	22		0	1	
Queue Length 95th (ft)		17			\#121	26	m0	m\#80		m0	m1	
Internal Link Dist (ft)		331			736			1812			613	
Turn Bay Length (ft)						50	50			50		
Base Capacity (vph)		83			74	114	253	1449		102	1472	
Starvation Cap Reductn		0			0	0	0	0		0	0	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.10			0.92	0.30	0.02	0.96		0.15	0.78	

Intersection Summary

Area Type: \quad Other
Cycle Length: $90 \quad$
Actuated Cycle Length: 90
Offset: $23(26 \%)$, Referenced to phase 2:NBSB, Start of Yellow
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.96 Intersection Signal Delay: 10.7 Intersection Capacity Utilization 88.0% Analysis Period (min) 15 $\#$ 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. \quad ICU Level of Service E $m \quad$ Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 216: Stoughton Rd

	4	\rightarrow	\geqslant				4	\dagger	\%		$\frac{1}{\square}$	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow		${ }^{1}$	4						4	「
Traffic Volume (vph)	0	257	310	391	677	0	0	0	0	206	0	206
Future Volume (vph)	0	257	310	391	677	0	0	0	0	206	0	206
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	0		0	0		50
Storage Lanes	0		0	1		0	0		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.926										0.850
Flt Protected				0.950							0.950	
Satd. Flow (prot)	0	1725	0	1770	1863	0	0	0	0	0	1770	1583
Flt Permitted				0.216							0.950	
Satd. Flow (perm)	0	1725	0	402	1863	0	0	0	0	0	1770	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		80										145
Link Speed (mph)		30			35			30			30	
Link Distance (ft)		684			478			428			360	
Travel Time (s)		15.5			9.3			9.7			8.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	279	337	425	736	0	0	0	0	224	0	224
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	616	0	425	736	0	0	0	0	0	224	224
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors		0		1	0					1	1	1
Detector Template										Left		
Leading Detector (ft)		0		36	0					20	15	15
Trailing Detector (ft)		0		0	0					0	0	0
Detector 1 Position(ft)		0		0	0					0	0	0
Detector 1 Size(ft)		6		36	6					20	15	15
Detector 1 Type		$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$					$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel												
Detector 1 Extend (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Queue (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Delay (s)		0.0		0.0	0.0					0.0	6.0	6.0
Turn Type		NA		D.P+P	NA					Split	NA	Prot
Protected Phases		2		3	32					4	4	4
Permitted Phases				2								
Detector Phase				3						4	4	4
Switch Phase												
Minimum Initial (s)		20.0		5.0						5.0	5.0	5.0
Minimum Split (s)		25.5		9.9						10.3	10.3	10.3
Total Split (s)		41.2		27.8						21.0	21.0	21.0

	$\stackrel{7}{ }$			\dagger			4	\dagger			\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (\%)		45.8\%		30.9\%						23.3\%	23.3\%	23.3\%
Maximum Green (s)		35.7		22.9						15.7	15.7	15.7
Yellow Time (s)		4.5		3.9						3.0	3.0	3.0
All-Red Time (s)		1.0		1.0						2.3	2.3	2.3
Lost Time Adjust (s)		0.0		0.0							0.0	0.0
Total Lost Time (s)		5.5		4.9							5.3	5.3
Lead/Lag		Lead		Lag								
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0		2.0						3.0	3.0	3.0
Recall Mode		C-Max		None						None	None	None
Act Effct Green (s)		40.5		60.1	65.0						14.8	14.8
Actuated g/C Ratio		0.45		0.67	0.72						0.16	0.16
v/c Ratio		0.75		0.76	0.55						0.77	0.59
Control Delay		26.6		15.0	5.0						54.7	19.8
Queue Delay		0.0		0.0	0.1						0.0	0.0
Total Delay		26.6		15.0	5.0						54.7	19.8
LOS		C		B	A						D	B
Approach Delay		26.6			8.7						37.3	
Approach LOS		C			A						D	
90th \%ile Green (s)		35.7		22.9						15.7	15.7	15.7
90th \%ile Term Code		Coord		Max						Max	Max	Max
70th \%ile Green (s)		35.7		22.9						15.7	15.7	15.7
70th \%ile Term Code		Coord		Max						Max	Max	Max
50th \%ile Green (s)		37.2		20.2						16.9	16.9	16.9
50th \%ile Term Code		Coord		Gap						Gap	Gap	Gap
30th \%ile Green (s)		42.8		17.0						14.5	14.5	14.5
30th \%ile Term Code		Coord		Gap						Gap	Gap	Gap
10th \%ile Green (s)		51.3		12.0						11.0	11.0	11.0
10th \%ile Term Code		Coord		Gap						Gap	Gap	Gap
Stops (vph)		404		203	132						185	75
Fuel Used(gal)		8		4	4						4	2
CO Emissions (g/hr)		582		284	280						272	128
NOX Emissions (g/hr)		113		55	55						53	25
VOC Emissions (g/hr)		135		66	65						63	30
Dilemma Vehicles (\#)		0		0	44						0	0
Queue Length 50th (ft)		266		50	87						119	39
Queue Length 95th (ft)		\#474		59	95						\#224	112
Internal Link Dist (ft)		604			398			348			280	
Turn Bay Length (tt)												50
Base Capacity (vph)		820		634	1346						313	399
Starvation Cap Reductn		0		0	63						0	0
Spillback Cap Reductn		0		0	0						0	0
Storage Cap Reductn		0		0	0						0	0
Reduced v/c Ratio		0.75		0.67	0.57						0.72	0.56

Intersection Summary

Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 90

Offset: $26(29 \%)$, Referenced to phase 2:EBWB, Start of Yellow
Natural Cycle: 70
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.77
Intersection Signal Delay: 19.4 Intersection LOS: B
Intersection Capacity Utilization 78.7\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 219: Bridge St (CT-140)

	4	\rightarrow						4				\pm
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		＊\uparrow			中4			＊	「で			
Traffic Volume（vph）	164	299	0	0	956	239	112	0	383	0	0	0
Future Volume（vph）	164	299	0	0	956	239	112	0	383	0	0	0
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	0		0	0		0	250		300	0		0
Storage Lanes	0		0	0		0	1		1	0		0
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	0.95	0.95	1.00	1.00	0.95	0.95	1.00	1.00	0.88	1.00	1.00	1.00
Frt					0.970				0.850			
Flt Protected		0.983						0.950				
Satd．Flow（prot）	0	3479	0	0	3433	0	0	1770	2787	0	0	0
Flt Permitted		0.534						0.950				
Satd．Flow（perm）	0	1890	0	0	3433	0	0	1770	2787	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）					53				416			
Link Speed（mph）		35			35			30			30	
Link Distance（ft）		478			323			585			321	
Travel Time（s）		9.3			6.3			13.3			7.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	178	325	0	0	1039	260	122	0	416	0	0	0
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	0	503	0	0	1299	0	0	122	416	0	0	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（ft）		0			6			0			0	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		9	15		9
Number of Detectors	1	2			0		1	1	1			
Detector Template	Left	Thru					Left					
Leading Detector（ft）	20	100			0		20	6	21			
Trailing Detector（ft）	0	0			0		0	0	－3			
Detector 1 Position（ft）	0	0			0		0	0	－3			
Detector 1 Size（ft）	20	6			6		20	6	24			
Detector 1 Type	Cl＋Ex	Cl＋Ex			Cl＋Ex		$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	Cl＋Ex			
Detector 1 Channel												
Detector 1 Extend（s）	0.0	0.0			0.0		0.0	0.0	0.0			
Detector 1 Queue（s）	0.0	0.0			0.0		0.0	0.0	0.0			
Detector 1 Delay（s）	0.0	0.0			0.0		0.0	0.0	9.0			
Detector 2 Position（ft）		94										
Detector 2 Size（ft）		6										
Detector 2 Type		Cl＋Ex										
Detector 2 Channel												
Detector 2 Extend（s）		0.0										
Turn Type	custom	NA			NA		Split	NA	custom			
Protected Phases	3	23			25		4	4	45			
Permitted Phases	2											

Lane Group $\quad \varnothing 2 \quad \emptyset 5$
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Ideal Flow (vphpl)
Storage Length (ft)
Storage Lanes
Taper Length (ft)
Lane Util. Factor
Frt
Flt Protected
Satd. Flow (prot)
Flt Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Peak Hour Factor
Adj. Flow (vph)
Shared Lane Traffic (\%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(ft)
Link Offset(ft)
Crosswalk Width(ft)
Two way Left Turn Lane
Headway Factor
Turning Speed (mph)
Number of Detectors
Detector Template
Leading Detector (ft)
Trailing Detector (ft)
Detector 1 Position(ft)
Detector 1 Size(ft)
Detector 1 Type
Detector 1 Channel
Detector 1 Extend (s)
Detector 1 Queue (s)
Detector 1 Delay (s)
Detector 2 Position(ft)
Detector 2 Size(ft)
Detector 2 Type
Detector 2 Channel
Detector 2 Extend (s)
Turn Type
Protected Phases

								\dagger	p		\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	3	3					4	4	5			
Switch Phase												
Minimum Initial (s)	5.0						7.0	7.0				
Minimum Split (s)	10.4						12.1	12.1				
Total Split (s)	17.0						18.0	18.0				
Total Split (\%)	18.9\%						20.0\%	20.0\%				
Maximum Green (s)	11.6						12.9	12.9				
Yellow Time (s)	4.1						3.0	3.0				
All-Red Time (s)	1.3						2.1	2.1				
Lost Time Adjust (s)								0.0				
Total Lost Time (s)								5.1				
Lead/Lag	Lag						Lead	Lead				
Lead-Lag Optimize?												
Vehicle Extension (s)	2.5						3.0	3.0				
Recall Mode	Max						None	None				
Act Effct Green (s)		50.4			50.6			10.8	21.5			
Actuated g/C Ratio		0.56			0.56			0.12	0.24			
v/c Ratio		0.40			0.66			0.58	0.42			
Control Delay		13.7			2.3			48.1	4.3			
Queue Delay		0.0			0.0			0.0	0.0			
Total Delay		13.7			2.3			48.1	4.3			
LOS		B			A			D	A			
Approach Delay		13.7			2.3			14.2				
Approach LOS		B			A			B				
90th \%ile Green (s)	11.6						12.9	12.9				
90th \%ile Term Code	MaxR						Max	Max				
70th \%ile Green (s)	11.6						12.9	12.9				
70th \%ile Term Code	MaxR						Max	Max				
50th \%ile Green (s)	11.6						11.5	11.5				
50th \%ile Term Code	MaxR						Gap	Gap				
30th \%ile Green (s)	11.6						9.6	9.6				
30th \%ile Term Code	MaxR						Gap	Gap				
10th \%ile Green (s)	11.6						7.0	7.0				
10th \%ile Term Code	MaxR						Min	Min				
Stops (vph)		280			94			104	34			
Fuel Used(gal)		5			4			2	2			
CO Emissions (g/hr)		349			283			153	158			
NOx Emissions (g/hr)		68			55			30	31			
VOC Emissions (g/hr)		81			66			35	37			
Dilemma Vehicles (\#)		78			13			0	0			
Queue Length 50th (ft)		70			22			66	0			
Queue Length 95th (ft)		132			m21			120	37			
Internal Link Dist (ft)		398			243			505			241	
Turn Bay Length (ft)									300			
Base Capacity (vph)		1244			1954			253	1042			
Starvation Cap Reductn		0			0			0	0			
Spillback Cap Reductn		0			0			0	0			
Storage Cap Reductn		0			0			0	0			
Reduced v/c Ratio		0.40			0.66			0.48	0.40			

Lane Group	$\emptyset 2$	$\varnothing 5$
Detector Phase		
Switch Phase		
Minimum Initial (s)	15.0	5.0
Minimum Split (s)	21.5	10.7
Total Split (s)	42.0	13.0
Total Split (\%)	47\%	14\%
Maximum Green (s)	35.5	7.3
Yellow Time (s)	4.5	4.5
All-Red Time (s)	2.0	1.2
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lag
Lead-Lag Optimize?		
Vehicle Extension (s)	3.0	1.5
Recall Mode	C-Max	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
90th \%ile Green (s)	37.8	5.0
90th \%ile Term Code	Coord	Min
70th \%ile Green (s)	37.8	5.0
70th \%ile Term Code	Coord	Min
50 th \%ile Green (s)	39.2	5.0
50th \%ile Term Code	Coord	Min
30th \%ile Green (s)	41.1	5.0
30th \%ile Term Code	Coord	Min
10th \%ile Green (s)	43.7	5.0
10th \%ile Term Code	Coord	Min
Stops (vph)		
Fuel Used(gal)		
CO Emissions (g/hr)		
NOx Emissions (g/hr)		
VOC Emissions (g/hr)		
Dilemma Vehicles (\#)		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		

Route 5 Study 04/17/2018 2040 AM Build Condition
Synchro 10 Report
SFM
Page 58

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow	F		$4{ }^{4}$			${ }_{4}{ }^{\text {d }}$	
Traffic Volume (vph)	6	41	4	6	47	10	16	1135	104	188	1067	23
Future Volume (vph)	6	41	4	6	47	10	16	1135	104	188	1067	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	0		0	200		0
Storage Lanes	0		0	0		1	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Frt		0.990				0.850		0.988			0.997	
Flt Protected		0.994			0.994			0.999			0.993	
Satd. Flow (prot)	0	1572	0	0	1774	1482	0	3287	0	0	3279	0
Flt Permitted		0.945			0.969			0.924			0.554	
Satd. Flow (perm)	0	1495	0	0	1729	1482	0	3040	0	0	1829	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						46		36			7	
Link Speed (mph)		25			25			45			45	
Link Distance (ft)		484			1094			527			557	
Travel Time (s)		13.2			29.8			8.0			8.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	100\%	8\%	0\%	10\%	6\%	9\%	8\%	9\%	2\%	3\%	10\%	11\%
Adj. Flow (vph)	7	45	4	7	51	11	17	1234	113	204	1160	25
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	56	0	0	58	11	0	1364	0	0	1389	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		\bigcirc	15		9
Number of Detectors	1	1		1	1	1	1	0		1	0	
Detector Template	Left			Left		Right	Left			Left		
Leading Detector (tt)	20	15		20	20	20	20	0		20	0	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	15		20	20	20	20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	

Detector 1 Channel

Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	NA
Protected Phases		4		4			2	2	2
Permitted Phases	4		4		4	2			
Detector Phase	4	4	4	4	4				
Switch Phase									15.0
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	15.0	15.0	15.0	
Minimum Split (s)	11.7	11.7	11.7	11.7	11.7	21.8	21.8	21.8	21.8

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
SBR											
Total Split (s)	11.7	11.7		11.7	11.7	11.7	78.3	78.3	78	78.3	
Total Split (\%)	13.0%	13.0%		13.0%	13.0%	13.0%	87.0%	87.0%	87.0%	87.0%	
Maximum Green (s)	7.0	7.0		7.0	7.0	7.0	71.5	71.5	7.5	71.5	
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	4.8	4.8	4.8	4.8	
All-Red Time (s)	1.7	1.7		1.7	1.7	1.7	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0			0.0	0.0		0.0		0.0	6.8

Lead/Lag
Lead-Lag Optimize?

Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	C-Max	C-Max	C-Max	C-Max
Act Effct Green (s)		7.0		7.0	7.0		75.2	75.2	
Actuated g/C Ratio		0.08		0.08	0.08	0.84	0.84		
V/c Ratio	0.47		0.43	0.07	0.54	0.91			
Control Delay	51.6		50.2	0.9	4.4	10.2			
Queue Delay	0.0	0.0	0.0	0.0	0.0				
Total Delay	51.6		50.2	0.9	4.4	10.2			
LOS	D		D	A	A	B			

Approach Delay		51.6		42.3			4.4		10.2
Approach LOS		D		D			A		B
90th \%ile Green (s)	7.0	7.0	7.0	7.0	7.0	71.5	71.5	71.5	71.5
90th \%ile Term Code	Max	Max	Max	Max	Max	Coord	Coord	Coord	Coord
70th \%ile Green (s)	7.0	7.0	7.0	7.0	7.0	71.5	71.5	71.5	71.5
70th \%ile Term Code	Max	Max	Max	Max	Max	Coord	Coord	Coord	Coord
50th \%ile Green (s)	7.0	7.0	7.0	7.0	7.0	71.5	71.5	71.5	71.5
50th \%ile Term Code	Max	Max	Max	Max	Max	Coord	Coord	Coord	Coord
30th \%ile Green (s)	7.0	7.0	7.0	7.0	7.0	71.5	71.5	71.5	71.5
30th \%ile Term Code	Max	Max	Max	Max	Max	Coord	Coord	Coord	Coord
10th \%ile Green (s)	0.0	0.0	0.0	0.0	0.0	83.2	83.2	83.2	83.2

Stops (vph)	48	51	0	491	530
Fuel Used(gal)	1	1	0	17	23
CO Emissions (g/hr)	66	86	7	1200	1615
NOx Emissions (g/hr)	13	17	1	233	314
VOC Emissions (g/hr)	15	20	2	278	374
Dilemma Vehicles (\#)	0	0	0	57	67
Queue Length 50th (ft)	29	32	0	128	85
Queue Length 95th (ft)	\#70	71	0	m170	m\#177
Internal Link Dist (ft)	404	1014		447	477
Turn Bay Length (t)					
Base Capacity (vph)	119	134	157	2546	1529
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.47	0.43	0.07	0.54	0.91

Intersection Summary

Area Type: Other
Cycle Length: 90

Actuated Cycle Length: 90
Offset: 87 (97%), Referenced to phase 2:NBSB, Start of Yellow
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.91
Intersection Signal Delay: 9.0 Intersection LOS: A
Intersection Capacity Utilization 93.6\% ICU Level of Service F
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 222: Southern Auto Auction

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		¢		\%	$\hat{\beta}$			\uparrow	$\overline{7}$
Traffic Volume (vph)	53	0	111	0	0	0	24	360	0	3	622	36
Future Volume (vph)	53	0	111	0	0	0	24	360	0	3	622	36
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	300		0	0		400
Storage Lanes	0		1	0		0	1		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor							1.00					

Link Speed (mph) Link Distance (ft)	25			30			45			45		
	532			223			1555			682		
Travel Time (s)		14.5			5.1			23.6			10.3	
Confl. Peds. (\#/hr)							1					
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	29\%	2\%	0\%	2\%	2\%	2\%	50\%	8\%	2\%	2\%	9\%	27\%
Adj. Flow (vph)	58	0	121	0	0	0	26	391	0	3	676	39

Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	58	121	0	0	0	26	391	0	0	679	39
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(tt)		5			0			12			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(tt)		16			16			16			16	

Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2		1	2		1	2	1
Detector Template	Left	Thru	Right	Left	Thru		Left			Left		Right
Leading Detector (ft)	20	100	20	20	100		20	293		20	283	20
Trailing Detector (ft)	0	0	0	0	0		0	200		0	200	0
Detector 1 Position(ft)	0	0	0	0	0		0	200		0	200	0
Detector 1 Size(ft)	20	6	20	20	6		20	6		20	6	20
Detector 1 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	Cl+Ex	Cl+Ex

Detector 1 Channel

Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94	6	287	6	277	
Detector 2 Size(ft)		6			Cl+Ex		Cl+Ex	6		
Detector 2 Type		Cl+Ex						Cl+Ex		

Detector 2 Extend (s)	0.0	0.0	0.0	0.0

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA	Prot				D.P+P	NA	Perm	NA	Perm	
Protected Phases		4	4		4	1	12		2	2	2	
Permitted Phases	4			4		2			2	2	2	
Detector Phase	4	4	4	4	4	1	2		2	2		

Switch Phase									
Minimum Initial (s)	4.5	4.5	4.5	4.5	4.5	4.5	15.0	15.0	15.0
Minimum Split (s)	9.0	9.0	9.0	9.0	9.0	9.0	21.0	21.0	21.0
Total Split (s)	15.0	15.0	15.0	15.0	15.0	9.0	66.0	66.0	66.0
Total Split (\%)	16.7\%	16.7\%	16.7\%	16.7\%	16.7\%	10.0\%	73.3\%	73.3\%	73.3\%

| Maximum Green (s) | 11.0 | 11.0 | 11.0 | 11.0 | 11.0 | 5.0 | 60.0 | 60.0 | 60.0 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Yellow Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 4.8 | 4.8 | 4.8 |
| All-Red Time (s) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.2 | 1.2 | 1.2 |
| Lost Time Adjust (s) | | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 |
| Total Lost Time (s) | | 4.0 | 4.0 | | 4.0 | 4.0 | 6.0 | 6.0 | |

| Recall Mode | None | None | None | None | None | None | | C-Min | C-Min |
| :--- | ---: | ---: | :--- | :--- | ---: | ---: | ---: | ---: | ---: | C-Min

Approach Delay	23.5					1.0			5.3	
Approach LOS		C					A		A	
90th \%ile Green (s)	14.8	14.8	14.8	14.8	14.8	6.8		54.4	54.4	54.4
90th \%ile Term Code	Gap	Gap	Gap	Gap	Gap	Gap		Coord	Coord	Coord
70th \%ile Green (s)	11.9	11.9	11.9	11.9	11.9	6.2		57.9	57.9	57.9
70th \%ile Term Code	Gap	Gap	Gap	Gap	Gap	Gap		Coord	Coord	Coord
50th \%ile Green (s)	10.0	10.0	10.0	10.0	10.0	0.0		70.0	70.0	70.0
50th \%ile Term Code	Gap	Gap	Gap	Gap	Gap	Skip		Coord	Coord	Coord
30th \%ile Green (s)	8.0	8.0	8.0	8.0	8.0	0.0		72.0	72.0	72.0
30th \%ile Term Code	Gap	Gap	Gap	Gap	Gap	Skip		Coord	Coord	Coord
10th \%ile Green (s)	5.5	5.5	5.5	5.5	5.5	0.0		74.5	74.5	74.5
10th \%ile Term Code	Gap	Gap	Gap	Gap	Gap	Skip		Coord	Coord	Coord
Stops (vph)		48	20			1	29		193	0
Fuel Used(gal)		1	1			0	4		6	0
CO Emissions (g/hr)		66	59			18	285		411	11
NOX Emissions (g/hr)		13	11			4	55		80	2
VOC Emissions (g/hr)		15	14			4	66		95	3
Dilemma Vehicles (\#)		0	0			0	3		25	0
Queue Length 50th (ft)		31	0			0	4		132	1
Queue Length 95th (ft)		67	46			1	8		78	m1
Internal Link Dist (ft)		452			143		1475		602	
Turn Bay Length (t)						300				400
Base Capacity (vph)		148	319			389	1436		1302	966
Starvation Cap Reductn		0	0			0	0		0	0

							\uparrow	1		\downarrow	\downarrow
Lane Group EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Spillback Cap Reductn	0	0				0	0			0	0
Storage Cap Reductn	0	0				0	0			0	0
Reduced v/c Ratio	0.39	0.38				0.07	0.27			0.52	0.04
Intersection Summary											
Area Type: Other	Other										
Cycle Length: 90											
Actuated Cycle Length: 90											
Offset: 44 (49\%), Referenced to phase 2:NBSB, Start of Yellow											
Natural Cycle: 60											
Control Type: Actuated-Coordinated											
Maximum v/c Ratio: 0.53											
Intersection Signal Delay: 6.4				Intersection LOS: A							
Intersection Capacity Utilization 48.1\% ICU Level of Service A											
Analysis Period (min) 15											

Splits and Phases: 225: MMCT Casino

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	7		\uparrow	「	\%	$\hat{\beta}$			\uparrow	F
Traffic Volume (vph)	8	0	32	7	1	8	23	367	44	12	693	28
Future Volume (vph)	8	0	32	,	1	8	23	367	44	12	693	28
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	12	12	12	12	12	12	12	12	12	12	12
Storage Length (ft)	0		0	0		50	360		0	0		370
Storage Lanes	0		1	0		1	1		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor			0.98									
Frt			0.850			0.850		0.984				0.850
Flt Protected		0.950			0.957		0.950				0.999	
Satd. Flow (prot)	0	1543	1615	0	1617	1615	1583	1740	0	0	1792	1482
Flt Permitted							0.334				0.991	
Satd. Flow (perm)	0	1624	1577	0	1690	1615	557	1740	0	0	1778	1482
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			63			112		33				61
Link Speed (mph)		25			25			45			45	
Link Distance (ft)		626			337			828			1555	
Travel Time (s)		17.1			9.2			12.5			23.6	

Confl. Bikes (\#hr)	1											
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	17%	0%	0%	14%	0%	0%	14%	8%	3%	0%	6%	9%
Adj. Flow (vph)	9	0	35	8	1	9	25	399	48	13	753	30

Shared Lane Traffic (\%)											
Lane Group Flow (vph)	0	9	35	0	9	9	25	447	0	0	766
Enter Blocked Intersection	No										
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left
Median Width(ft)		5			0			12			0
Link Offset(ft)		0			0			0			
Crosswalk Width(ft)		16			16			16		16	

Two way Left Turn Lane												
Headway Factor	1.04	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1	1	1	2		1	2	2
Detector Template	Left			Left						Left		
Leading Detector (tt)	20	29	29	20	14	14	24	366		20	366	366
Trailing Detector (ft)	0	-5	-5	0	-10	-10	-10	180		0	180	180
Detector 1 Position(ft)	0	-5	-5	0	-10	-10	-10	180		0	180	180
Detector 1 Size(ft)	20	34	34	20	24	24	34	6		20	6	6
Detector 1 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$						
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 2 Position(ft)								360			360	360
Detector 2 Size(ft)								6			6	6
Detector 2 Type								$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$

Detector 2 Channel

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Extend (s)								0.0		0.0	0.0	
Turn Type	Perm	NA	pm+ov	Perm	NA	Perm	D.P+P	NA	Perm	NA	Perm	
Protected Phases		4	1		4		1	12		2	2	2
Permitted Phases	4		4	4		4	2			2		2
Detector Phase	4	4	4	4	4	4	1	2		2	2	2

Switch Phase

Minimum Initial (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	15.0	15.0	15.0
Minimum Split (s)	9.0	9.0	9.0	9.0	9.0	9.0	9.0	23.4	23.4	23.4
Total Split (s)	9.0	9.0	9.0	9.0	9.0	9.0	9.0	72.0	72.0	72.0
Total Split (\%)	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	80.0%	80.0%	80.0%
Maximum Green (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	63.8	63.8	63.8
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.8	4.8	4.8
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	3.4	3.4	3.4
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0		0.0	0.0
Total Lost Time (s)		4.0	4.0		4.0	4.0	4.0		Lead	Lag
Lead/Lag			Lead					Lag	8.2	

Lead-Lag Optimize?

Vehicle Extension (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5		2.5	2.5	2.5
Recall Mode	None		C-Min	C-Min	C-Min						
Act Effct Green (s)		5.1	6.9		5.1	5.1	78.7	81.9		76.0	76.0
Actuated g/C Ratio		0.06	0.08		0.06	0.06	0.87	0.91		0.84	0.84
v/c Ratio		0.10	0.19		0.09	0.05	0.05	0.28		0.51	0.02
Control Delay		42.1	5.8		42.0	0.5	1.5	2.8		1.9	0.1
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0
Total Delay		42.1	5.8		42.0	0.5	1.5	2.8		1.9	0.1
LOS		D	A		D	A	A	A		A	A
Approach Delay		13.2			21.3			2.7		1.8	
Approach LOS		B			C			A		A	
90th \%ile Green (s)	6.3	6.3	4.7	6.3	6.3	6.3	4.7		62.8	62.8	62.8
90th \%ile Term Code	Gap		Coord	Coord	Coord						
70th \%ile Green (s)	5.4	5.4	4.5	5.4	5.4	5.4	4.5		63.9	63.9	63.9
70th \%ile Term Code	Gap	Gap	Min	Gap	Gap	Gap	Min		Coord	Coord	Coord
50th \%ile Green (s)	4.7	4.7	0.0	4.7	4.7	4.7	0.0		73.1	73.1	73.1
50th \%ile Term Code	Gap	Gap	Skip	Gap	Gap	Gap	Skip		Coord	Coord	Coord
30th \%ile Green (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		81.8	81.8	81.8
30th \%ile Term Code	Skip		Coord	Coord	Coord						
10th \%ile Green (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		81.8	81.8	81.8
10th \%ile Term Code	Skip		Coord	Coord	Coord						
Stops (vph)		10	3		10	0	4	105		32	0
Fuel Used(gal)		0	0		0	0	0	4		8	0
CO Emissions (g/hr)		10	15		9	2	13	262		544	20
NOx Emissions (g/hr)		2	3		2	0	2	51		106	4
VOC Emissions (g/hr)		2	4		2	0	3	61		126	5
Dilemma Vehicles (\#)		0	0		0	0	0	23		11	0
Queue Length 50th (tt)		5	0		5	0	0	9		11	0
Queue Length 95th (ft)		20	12		20	0	7	74		53	m0
Internal Link Dist (ft)		546			257			748		1475	
Turn Bay Length (t)						50	360				370
Base Capacity (vph)		96	184		100	201	545	1590		1504	1263

						4	4	7		\downarrow	\checkmark
Lane Group EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Starvation Cap Reductn	0	0		0	0	0	0			0	0
Spillback Cap Reductn	0	0		0	0	0	0			0	0
Storage Cap Reductn	0	0		0	0	0	0			0	0
Reduced v/c Ratio	0.09	0.19		0.09	0.04	0.05	0.28			0.51	0.02
Intersection Summary											
Area Type: Other											
Cycle Length: 90											
Actuated Cycle Length: 90											
Offset: 66 (73\%), Referenced to phase 2:NBSB, Start of Yellow											
Natural Cycle: 60											
Control Type: Actuated-Coordinated											
Maximum v/c Ratio: 0.51											
Intersection Signal Delay: 2.8				Intersection LOS: A							
Intersection Capacity Utilization 62.9\% ICU Level of Service B											
Analysis Period (min) 15											
m Volume for 95th percentile queue is	metered	by upstr	am sig								

Splits and Phases: 226: Big Y/Ethos

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\hat{F}		\%	$\hat{\beta}$		${ }^{7}$	¢4	F	\%	\uparrow	
Trafic Volume (vph)	0	0	5	74	0	42	18	408	77	47	688	8
Future Volume (vph)	0	0	5	74	0	42	18	408	77	47	688	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	12	12	12	12	12	12	12	12	12	12	12
Storage Length (ft)	0		0	0		0	110		140	250		0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (tt)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	1.00	1.00
Ped Bike Factor		0.97										
Frt		0.850			0.850				0.850		0.998	
FIt Protected				0.950			0.950			0.950		
Satd. Flow (prot)	1837	1572	0	1736	1568	0	1805	3312	1524	1770	1774	0
Flt Permitted				0.976			0.307			0.487		
Satd. Flow (perm)	1837	1572	0	1783	1568	0	583	3312	1524	907	1774	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		321			533				96		1	
Link Speed (mph)		25			25			45			45	
Link Distance (ft)		349			546			571			400	
Travel Time (s)		9.5			14.9			8.7			6.1	
Confl. Bikes (\#/hr)			1									
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	0\%	0\%	4\%	0\%	3\%	0\%	9\%	6\%	2\%	7\%	0\%
Adj. Flow (vph)	0	0	5	80	0	46	20	443	84	51	748	9
Shared Lane Trafic (\%)												
Lane Group Flow (vph)	0	5	0	80	46	0	20	443	84	51	757	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	2	1	1	2	
Detector Template									Right		Thru	
Leading Detector (ft)	30	30		33	46		48	356	20	38	100	
Trailing Detector (ft)	-5	-5		-5	0		0	165	0	0	0	
Detector 1 Position(ft)	-5	-5		-5	0		0	165	0	0	0	
Detector 1 Size(ft)	35	35		38	46		48	6	20	38	6	
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(ft)								350			94	
Detector 2 Size(ft)								6			6	
Detector 2 Type								Cl+Ex			Cl+Ex	
Detector 2 Channel												

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Extend (s)								0.0			0.0	
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8			2		2	6		
Detector Phase	7	4		3	8		5	2	2	1	6	
Switch Phase												
Minimum Initial (s)	3.6	5.0		3.6	5.0		3.6	13.1	13.1	4.1	13.1	
Minimum Split (s)	8.1	9.7		8.1	9.7		8.1	24.3	24.3	8.1	21.3	
Total Split (s)	8.1	9.8		10.0	11.7		8.2	61.8	61.8	8.4	62.0	
Total Split (\%)	9.0\%	10.9\%		11.1\%	13.0\%		9.1\%	68.7\%	68.7\%	9.3\%	68.9\%	
Maximum Green (s)	5.0	5.1		6.9	7.0		5.1	55.5	55.5	5.3	55.7	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	4.5	4.5	3.0	4.5	
All-Red Time (s)	0.1	1.7		0.1	1.7		0.1	1.8	1.8	0.1	1.8	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.1	4.7		3.1	4.7		3.1	6.3	6.3	3.1	6.3	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.5	2.5	2.0	2.5	
Recall Mode	None	None		None	None		None	C-Min	C-Min	None	C-Min	
Act Effct Green (s)		5.0		9.2	7.8		74.2	69.3	69.3	75.1	71.0	
Actuated g/C Ratio		0.06		0.10	0.09		0.82	0.77	0.77	0.83	0.79	
v / c Ratio		0.01		0.44	0.07		0.04	0.17	0.07	0.06	0.54	
Control Delay		0.0		44.2	0.2		1.0	2.2	0.9	1.5	4.8	
Queue Delay		0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay		0.0		44.2	0.2		1.0	2.2	0.9	1.5	4.8	
LOS		A		D	A		A	A	A	A	A	
Approach Delay					28.2			2.0			4.6	
Approach LOS					C			A			A	
90th \%ile Green (s)	0.0	5.0		6.9	15.0		5.2	55.5	55.5	5.4	55.7	
90th \%ile Term Code	Skip	Min		Max	Hold		Max	Coord	Coord	Max	Coord	
70th \%ile Green (s)	0.0	0.0		9.5	7.9		4.8	62.9	62.9	5.1	63.2	
70th \%ile Term Code	Skip	Skip		Gap	Hold		Gap	Coord	Coord	Gap	Coord	
50th \%ile Green (s)	0.0	0.0		7.9	6.3		0.0	64.7	64.7	4.9	72.7	
50th \%ile Term Code	Skip	Skip		Gap	Hold		Skip	Coord	Coord	Gap	Coord	
30th \%ile Green (s)	0.0	0.0		7.1	0.0		0.0	73.5	73.5	0.0	73.5	
30th \%ile Term Code	Skip	Skip		Gap	Skip		Skip	Coord	Coord	Skip	Coord	
10th \%ile Green (s)	0.0	0.0		0.0	0.0		0.0	83.7	83.7	0.0	83.7	
10th \%ile Term Code	Skip	Skip		Skip	Skip		Skip	Coord	Coord	Skip	Coord	
Stops (vph)		0		66	0		2	59	5	5	172	
Fuel Used(gal)		0		1	0		0	2	0	0	6	
CO Emissions (g/hr)		1		88	14		7	170	25	22	447	
NOx Emissions (g/hr)		0		17	3		1	33	5	4	87	
VOC Emissions (g/hr)		0		20	3		2	39	6	5	104	
Dilemma Vehicles (\#)		0		0	0		0	10	0	0	44	
Queue Length 50th (ft)		0		44	0		0	1	0	4	91	
Queue Length 95th (ft)		0		80	0		m2	m22	m0	m4	123	
Internal Link Dist (ft)		269			466			491			320	
Turn Bay Length (ft)							110		140	250		
Base Capacity (vph)		391		188	633		551	2550	1196	807	1400	

						,	\dagger	7			\checkmark
Lane Group EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Starvation Cap Reductn	0		0	0		0	0	0	0	0	
Spillback Cap Reductn	0		0	0		0	0	0	0	0	
Storage Cap Reductn	0		0	0		0	0	0	0	0	
Reduced v/c Ratio	0.01		0.43	0.07		0.04	0.17	0.07	0.06	0.54	
Intersection Summary											
Area Type: Other	Other										
Cycle Length: 90											
Actuated Cycle Length: 90											
Offset: 76 (84\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow											
Natural Cycle: 65											
Control Type: Actuated-Coordinated											
Maximum v/c Ratio: 0.54											
Intersection Signal Delay: 5.6			Intersection LOS: A								
Intersection Capacity Utilization 59.0\%			ICU Level of Service B								
Analysis Period (min) 15											
m Volume for 95 th percentile queue is	metere	by upstr	am sign								

Splits and Phases: 228: Walmart

	\rangle	\rightarrow		7	\leftarrow		4	\dagger	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	\uparrow			\uparrow		${ }^{7}$	\uparrow		\%	F	
Traffic Volume (vph)	110	0	140	10	10	20	44	907	0	1	593	44
Future Volume (vph)	110	0	140	10	10	20	44	907	0	1	593	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	150		0	150		0
Storage Lanes	1		0	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.932						0.990	
Flt Protected	0.950				0.988		0.950			0.950		
Satd. Flow (prot)	1770	1583	0	0	1715	0	1770	1863	0	1770	1844	0
Flt Permitted	0.893				0.834		0.315			0.950		
Satd. Flow (perm)	1663	1583	0	0	1448	0	587	1863	0	1770	1844	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		375			22						9	
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		335			295			682			908	
Travel Time (s)		7.6			6.7			10.3			13.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	120	0	152	11	11	22	48	986	0	1	645	48
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	120	152	0	0	44	0	48	986	0	1	693	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			20	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru										
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex										
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Prot	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2				6	

7: Eversource

Intersection Summary \quad Other
Area Type:
Cycle Length: 90
Actuated Cycle Length: 90 Offset: 24 (27\%), Referenced to phase 2:NBTL and 6:SBT, Start of Yellow Natural Cycle: 70 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.69 Intersection Signal Delay: 10.3 Intersection Capacity Utilization 68.0% Analysis Period (min) 15 \# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 7: Eversource

	4		4	\dagger		\checkmark
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M		\%	\uparrow	\uparrow	
Traffic Volume (vph)	10	40	47	764	570	12
Future Volume (vph)	10	40	47	764	570	12
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.892				0.997	
FIt Protected	0.990		0.950			
Satd. Flow (prot)	1645	0	1770	1863	1857	0
Flt Permitted	0.990		0.950			
Satd. Flow (perm)	1645	0	1770	1863	1857	0
Link Speed (mph)	30			45	45	
Link Distance (ft)	203			517	266	
Travel Time (s)	4.6			7.8	4.0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	11	43	51	830	620	13
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	54	0	51	830	633	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			23	23	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 50.2%Analysis Period (min) 15		ICU Level of Service A				

	4		4	\dagger		\checkmark
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M		\%	4	4	
Trafic Volume (vph)	3	14	22	945	852	5
Future Volume (vph)	3	14	22	945	852	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	100			0
Storage Lanes	1	0	1			0
Taper Length (ft)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.887				0.999	
Flt Protected	0.992		0.950			
Satd. Flow (prot)	1639	0	1770	1863	1861	0
Flt Permitted	0.992		0.950			
Satd. Flow (perm)	1639	0	1770	1863	1861	0
Link Speed (mph)	30			45	45	
Link Distance (ft)	236			390	828	
Travel Time (s)	5.4			5.9	12.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	3	15	24	1027	926	5
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	18	0	24	1027	931	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 59.7\% ICU Level of Service B						
Analysis Period (min) 15						

	4					4	4	4	\%	\searrow		4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$		「		\uparrow	「	${ }^{7}$	1t		${ }^{*}$	1t	
Traffic Volume (vph)	40	0	27	121	0	165	27	1404	35	125	1428	40
Future Volume (vph)	40	0	27	121	0	165	27	1404	35	125	1428	40
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		100	0		0	0		0
Storage Lanes	1		1	0		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt			0.850			0.850		0.996			0.996	
Flt Protected	0.950				0.950		0.950			0.950		
Satd. Flow (prot)	1770	0	1583	0	1517	1495	1770	3332	0	1770	3395	0
Flt Permitted	0.625				0.950		0.140			0.950		
Satd. Flow (perm)	1164	0	1583	0	1517	1495	261	3332	0	1770	3395	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			182			119		4			7	
Link Speed (mph)		30			25			45			45	
Link Distance (ft)		283			1258			264			430	
Travel Time (s)		6.4			34.3			4.0			6.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	2\%	2\%	2\%	19\%	2\%	8\%	2\%	8\%	4\%	2\%	6\%	2\%
Adj. Flow (vph)	43	0	29	132	0	179	29	1526	38	136	1552	43
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	43	0	29	0	132	179	29	1564	0	136	1595	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Right	Right	Left	Left	Right
Median Width(ft)		12			30			12			20	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1		1	1	2	1	1	2		1	0	
Detector Template	Left		Right		Thru		Left					
Leading Detector (ft)	20		20	34	100	34	20	100		34	0	
Trailing Detector (ft)	0		0	0	0	0	0	0		0	0	
Detector 1 Position(ft)	0		0	0	0	0	0	0		0	0	
Detector 1 Size(ft)	20		20	34	6	34	20	6		34	6	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	8.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)					94			94				
Detector 2 Size(ft)					6			6				
Detector 2 Type					Cl+Ex			Cl+Ex				
Detector 2 Channel												
Detector 2 Extend (s)					0.0			0.0				
Turn Type	D.Pm		Perm	Prot	NA	custom	Perm	NA		Prot	NA	
Protected Phases				4	8	5		6		5	125	

Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Ideal Flow (vphpl)
Storage Length (ft)
Storage Lanes
Taper Length (ft)
Lane Util. Factor
Frt
Flt Protected
Satd. Flow (prot)
Flt Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Peak Hour Factor
Heavy Vehicles (\%)
Adj. Flow (vph)
Shared Lane Traffic (\%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(ft)
Link Offset(ft)
Crosswalk Width(ft)
Two way Left Turn Lane
Headway Factor
Turning Speed (mph)
Number of Detectors
Detector Template
Leading Detector (ft)
Trailing Detector (ft)
Detector 1 Position(ft)
Detector 1 Size(ft)
Detector 1 Type
Detector 1 Channel
Detector 1 Extend (s)
Detector 1 Queue (s)
Detector 1 Delay (s)
Detector 2 Position(ft)
Detector 2 Size(ft)
Detector 2 Type
Detector 2 Channel
Detector 2 Extend (s)
Turn Type
Protected Phases

	\rangle			\checkmark			4	\dagger	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	4		4			4	6					
Detector Phase	4		4	4	8	4	6	6		5		
Switch Phase												
Minimum Initial (s)	7.0		7.0	7.0	5.0	5.0	15.0	15.0		5.0		
Minimum Split (s)	12.6		12.6	12.6	22.5	10.2	21.2	21.2		10.2		
Total Split (s)	22.5		22.5	22.5	22.5	13.4	54.1	54.1		13.4		
Total Split (\%)	25.0\%		25.0\%	25.0\%	25.0\%	14.9\%	60.1\%	60.1\%		14.9\%		
Maximum Green (s)	16.9		16.9	16.9	18.0	8.2	47.9	47.9		8.2		
Yellow Time (s)	3.0		3.0	3.0	3.5	3.0	4.8	4.8		3.0		
All-Red Time (s)	2.6		2.6	2.6	1.0	2.2	1.4	1.4		2.2		
Lost Time Adjust (s)	0.0		0.0		0.0	0.0	0.0	0.0		0.0		
Total Lost Time (s)	5.6		5.6		4.5	5.2	6.2	6.2		5.2		
Lead/Lag						Lead	Lag	Lag		Lead		
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5		1.5	1.5	3.0	1.5	2.5	2.5		1.5		
Recall Mode	None		None	None	None	None	C-Min	C-Min		None		
Walk Time (s)					7.0							
Flash Dont Walk (s)					11.0							
Pedestrian Calls (\#/hr)					0							
Act Effct Green (s)	16.9		16.9		18.0	30.6	48.0	48.0		8.1	60.9	
Actuated g/C Ratio	0.19		0.19		0.20	0.34	0.53	0.53		0.09	0.68	
v/c Ratio	0.20		0.07		0.44	0.31	0.21	0.88		0.86	0.69	
Control Delay	33.6		0.3		36.8	9.7	13.6	18.5		69.3	7.6	
Queue Delay	0.0		0.0		0.0	0.0	0.0	0.4		0.0	0.1	
Total Delay	33.6		0.3		36.8	9.7	13.6	18.9		69.3	7.7	
LOS	C		A		D	A	B	B		E	A	
Approach Delay		20.2			21.2			18.8			12.5	
Approach LOS		C			C			B			B	
90th \%ile Green (s)	16.9		16.9	16.9	18.0	8.2	47.9	47.9		8.2		
90th \%ile Term Code	Hold		Hold	Hold	Max	Max	Coord	Coord		Max		
70th \%ile Green (s)	16.9		16.9	16.9	18.0	8.2	47.9	47.9		8.2		
70th \%ile Term Code	Hold		Hold	Hold	Max	Max	Coord	Coord		Max		
50th \%ile Green (s)	16.9		16.9	16.9	18.0	8.2	47.9	47.9		8.2		
50th \%ile Term Code	Hold		Hold	Hold	Max	Max	Coord	Coord		Max		
30th \%ile Green (s)	16.9		16.9	16.9	18.0	8.2	47.9	47.9		8.2		
30th \%ile Term Code	Hold		Hold	Hold	Max	Max	Coord	Coord		Max		
10th \%ile Green (s)	16.9		16.9	16.9	18.0	7.5	48.6	48.6		7.5		
10th \%ile Term Code	Hold		Hold	Hold	Max	Gap	Coord	Coord		Gap		
Stops (vph)	34		0		104	46	13	1019		109	332	
Fuel Used(gal)	1		0		3	2	0	25		3	11	
CO Emissions (g/hr)	38		4		182	159	26	1748		242	734	
NOx Emissions (g/hr)	7		1		35	31	5	340		47	143	
VOC Emissions (g/hr)	9		1		42	37	6	405		56	170	
Dilemma Vehicles (\#)	0		0		0	0	0	102		0	162	
Queue Length 50th (ft)	21		0		66	23	7	341		84	104	
Queue Length 95th (ft)	51		0		122	70	m8	m213		m94	m120	
Internal Link Dist (tt)		203			1178			184			350	
Turn Bay Length (t)						100						
Base Capacity (vph)	218		445		303	586	138	1780		161	2299	

Lane Group	$\varnothing 1$	$\emptyset 2$	
Permitted Phases			
Detector Phase			
Switch Phase			
Minimum Initial (s)	5.0	15.0	
Minimum Split (s)	11.6	21.2	
Total Split (s)	20.6	46.9	
Total Split (\%)	23\%	52\%	
Maximum Green (s)	14.0	40.7	
Yellow Time (s)	3.0	4.8	
All-Red Time (s)	3.6	1.4	
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lead	Lag	
Lead-Lag Optimize?			
Vehicle Extension (s)	1.5	2.5	
Recall Mode	None	C-Min	
Walk Time (s)			
Flash Dont Walk (s)			
Pedestrian Calls (\#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
90th \%ile Green (s)	14.0	40.7	
90th \%ile Term Code	Max	Coord	
70th \%ile Green (s)	14.0	40.7	
70th \%ile Term Code	Max	Coord	
50th \%ile Green (s)	14.0	40.7	
50th \%ile Term Code	Max	Coord	
30th \%ile Green (s)	12.4	42.3	
30th \%ile Term Code	Gap	Coord	
10th \%ile Green (s)	8.7	46.0	
10th \%ile Term Code	Gap	Coord	
Stops (vph)			
Fuel Used(gal)			
CO Emissions (g/hr)			
NOx Emissions (g/hr)			
VOC Emissions (g/hr)			
Dilemma Vehicles (\#)			
Queue Length 50th (ft)			
Queue Length 95th (ft)			
Internal Link Dist (ft)			
Turn Bay Length (ft)			
Base Capacity (vph)			
Route 5 Study 04/17/2 SFM	$10 \mathrm{AM}$	ild Con	Synchro 10 Report Page 10

	7	\rightarrow	7	\dagger	\leftarrow	4	4	\dagger	$>$	*	\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Starvation Cap Reductn	0		0		0	0	0	0		0	57	
Spillback Cap Reductn	0		0		0	1	0	32		0	0	
Storage Cap Reductn	0		0		0	0	0	0		0	0	
Reduced v/c Ratio	0.20		0.07		0.44	0.31	0.21	0.89		0.84	0.71	
Intersection Summary												
Area Type:												

Cycle Length: 90
Actuated Cycle Length: 90
Offset: $0(0 \%)$, Referenced to phase 2:SBT and 6:NBTL, Start of Yellow
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.97

Intersection Signal Delay: 16.1	Intersection LOS: B
Intersection Capacity Utilization 81.0\%	ICU Level of Service D

Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 21: Thompson Rd

Lane Group $\quad \varnothing 1 \quad \varnothing 2$
Starvation Cap Reductn
Spilllack Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

	\rangle		4	\uparrow		\checkmark
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	${ }^{\text {\% }}$	F'	\%	\uparrow	\uparrow	
Traffic Volume (vph)	38	25	30	1428	1530	46
Future Volume (vph)	38	25	30	1428	1530	46
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	100			0
Storage Lanes	1	1	1			0
Taper Length (ft)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.996	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1770	1583	1770	1863	1855	0
Flt Permitted	0.950		0.950			
Satd. Flow (perm)	1770	1583	1770	1863	1855	0
Link Speed (mph)	30			45	45	
Link Distance (ft)	274			934	476	
Travel Time (s)	6.2			14.2	7.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	41	27	33	1552	1663	50
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	41	27	33	1552	1713	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 93.3\% ICU Level of Service F						
Analysis Period (min) 15						

	\checkmark		\uparrow	$>$		\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		「	\uparrow	F'		\uparrow
Traffic Volume (vph)	0	82	1444	10	0	1689
Future Volume (vph)	0	82	1444	10	0	1689
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0		150	0	
Storage Lanes	0	1		1	0	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.865		0.850		
Flt Protected						
Satd. Flow (prot)	0	1611	1863	1583	0	1863
Flt Permitted						
Satd. Flow (perm)	0	1611	1863	1583	0	1863
Link Speed (mph)	30		45			45
Link Distance (ft)	314		334			1978
Travel Time (s)	7.1		5.1			30.0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	89	1570	11	0	1836
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	0	89	1570	11	0	1836
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	0		12			12
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)Sign Control	15	9		9	15	
	Stop		Free			Free

Intersection Summary	
Area Type: Other	
Control Type: Unsignalized	
Intersection Capacity Utilization 92.2\%	ICU Level of Service F
Analysis Period (min) 15	

Intersection Summary Other	
Area Type:	
Control Type: Unsignalized	
Intersection Capacity Utilization 28.2\%	ICU Level of Service A
Analysis Period (min) 15	

	\dagger		\dagger	p		\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		F	4	「		\uparrow
Traffic Volume (vph)	0	87	1230	15	0	1501
Future Volume (vph)	0	87	1230	15	0	1501
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0		100	0	
Storage Lanes	0	1		1	0	
Taper Length (ft)	25				25	
Lane Utill. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.865		0.850		
Flt Protected						
Satd. Flow (prot)	0	1611	1863	1583	0	1863
Flt Permitted						
Satd. Flow (perm)	0	1611	1863	1583	0	1863
Link Speed (mph)	30		45			45
Link Distance (ft)	231		308			1040
Travel Time (s)	5.3		4.7			15.8
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	95	1337	16	0	1632
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	0	95	1337	16	0	1632
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	0		8			8
Link Offset(ft)	0		0			0
Crosswalk Width(tt)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 82.3\% ICU Level of Service E						
Analysis Period (min) 15						

Intersection Summary \quad Other	
Area Type:	
Control Type: Unsignalized	
Intersection Capacity Utilization 23.8\%	ICU Level of Service A
Analysis Period (min) 15	

	\Rightarrow		4	\dagger		\checkmark
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	\%	${ }^{7}$	${ }^{*}$	\uparrow	\uparrow	「
Trafic Volume (vph)	13	11	4	1219	1528	5
Future Volume (vph)	13	11	4	1219	1528	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	50	100			100
Storage Lanes	1	1	1			1
Taper Length (ft)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				0.850
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1770	1583	1770	1863	1863	1583
FIt Permitted	0.950		0.950			
Satd. Flow (perm)	1770	1583	1770	1863	1863	1583
Link Speed (mph)	30			45	45	
Link Distance (ft)	783			1377	2677	
Travel Time (s)	17.8			20.9	40.6	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	14	12	4	1325	1661	5
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	14	12	4	1325	1661	5
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane 1.001 .001 .00						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 90.4\% ICU Level of Service E		ICU Level of Service E				
Analysis Period (min) 15						

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	F		\＄		${ }^{7}$	个个		${ }^{7}$	恨	
Traffic Volume（vph）	58	5	141	47	2	60	164	1396	49	62	1406	11
Future Volume（vph）	58	5	141	47	2	60	164	1396	49	62	1406	11
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	0		100	0		0	0		0	700		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor								1.00		1.00		
Frt			0.850		0.926			0.995			0.999	
Flt Protected		0.956			0.979		0.950			0.950		
Satd．Flow（prot）	0	1736	1509	0	1722	0	1530	3362	0	1805	3404	0
Flt Permitted		0.669			0.835		0.950			0.950		
Satd．Flow（perm）	0	1215	1509	0	1469	0	1530	3362	0	1804	3404	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			182		60			6			1	
Link Speed（mph）		30			25			45			45	
Link Distance（ft）		731			393			430			1397	
Travel Time（s）		16.6			10.7			6.5			21.2	
Confl．Peds．（\＃／hr）									1	1		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	5\％	0\％	7\％	0\％	0\％	0\％	18\％	7\％	0\％	0\％	6\％	0\％
Adj．Flow（vph）	63	5	153	51	2	65	178	1517	53	67	1528	12

Shared Lane Traffic（\％）												
Lane Group Flow（vph）	0	68	153	0	118	0	178	1570	0	67	1540	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Right	Right
Median Width（ft）		0			0			24			30	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		1	0		1	2	
Detector Template	Left			Left			Left					
Leading Detector（ft）	20	29	29	20	29		34	0		29	306	
Trailing Detector（ft）	0	－5	－5	0	－5		0	0		－5	150	
Detector 1 Position（ft）	0	－5	－5	0	－5		0	0		－5	150	
Detector 1 Size（ft）	20	34	34	20	34		34	6		34	6	
Detector 1 Type	Cl＋Ex	Cl＋Ex	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex		Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$		Cl＋Ex	Cl＋Ex	

Detector 1 Channel

Detector 1 Extend（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay（s）	0.0	0.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0

Detector 2 Position（ft） 300
Detector 2 Size（ft） 6
Detector 2 Type $\mathrm{Cl}+\mathrm{Ex}$

Detector 2 Channel
Detector 2 Extend（s） 0.0

Lane Group $\quad \varnothing 8$
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Ideal Flow (vphpl)
Storage Length (ft)
Storage Lanes
Taper Length (ft)
Lane Util. Factor
Ped Bike Factor
Frt
Flt Protected
Satd. Flow (prot)
Flt Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Confl. Peds. (\#/hr)
Peak Hour Factor
Heavy Vehicles (\%)
Adj. Flow (vph)
Shared Lane Traffic (\%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(ft)
Link Offset(ft)
Crosswalk Width(ft)
Two way Left Turn Lane
Headway Factor
Turning Speed (mph)
Number of Detectors
SFM 5
Detector Template
Leading Detector (ft)
Trailing Detector (ft)
Detector 1 Position(ft)
Detector 1 Size(ft)
Detector 1 Type
Detector 1 Channel
Detector 1 Extend (s)
Detector 1 Queue (s)
Detector 1 Delay (s)
Detector 2 Position(ft)
Detector 2 Size(ft)
Detector 2 Type
Detector 2 Channel
Dextend (s)

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA	Perm	Perm	NA		Prot	NA		Prot	NA	
Protected Phases		4			4		1	6		5	2	
Permitted Phases	4		4	4								
Detector Phase	4	4	4	4	4		1			5	2	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		5.0	15.0		5.0	15.0	
Minimum Split (s)	12.6	12.6	12.6	12.6	12.6		11.6	21.2		10.2	21.2	
Total Split (s)	22.5	22.5	22.5	22.5	22.5		20.6	54.1		13.4	46.9	
Total Split (\%)	25.0\%	25.0\%	25.0\%	25.0\%	25.0\%		22.9\%	60.1\%		14.9\%	52.1\%	
Maximum Green (s)	16.9	16.9	16.9	16.9	16.9		14.0	47.9		8.2	40.7	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0	4.8		3.0	4.8	
All-Red Time (s)	2.6	2.6	2.6	2.6	2.6		3.6	1.4		2.2	1.4	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		5.6	5.6		5.6		6.6	6.2		5.2	6.2	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5	1.5	1.5	1.5	1.5		1.5	2.5		1.5	2.5	
Recall Mode	None	None	None	None	None		None	C-Min		None	C-Min	
Walk Time (s)												

Flash Dont Walk (s)
Pedestrian Calls (\#hr)

Act Efft Green (s)		16.9	16.9		16.9	12.6	48.0	8.1	42.1
Actuated g/C Ratio		0.19	0.19		0.19	0.14	0.53	0.09	0.47
v/c Ratio		0.30	0.35		0.36	0.83	0.87	0.42	0.97
Control Delay		35.7	5.7		20.6	69.6	11.0	46.3	38.3
Queue Delay		0.0	0.0		0.0	0.0	1.0	0.0	0.0
Total Delay		35.7	5.7		20.6	69.6	12.0	46.3	38.3
LOS		D	A		C	E	B	D	D
Approach Delay		14.9			20.6		17.9		38.7
Approach LOS		B			C		B		D
90th \%ile Green (s)	16.9	16.9	16.9	16.9	16.9	14.0	47.9	8.2	40.7
90th \%ile Term Code	Hold	Hold	Hold	Hold	Hold	Max	Coord	Max	Coord
70th \%ile Green (s)	16.9	16.9	16.9	16.9	16.9	14.0	47.9	8.2	40.7
70th \%ile Term Code	Hold	Hold	Hold	Hold	Hold	Max	Coord	Max	Coord
50th \%ile Green (s)	16.9	16.9	16.9	16.9	16.9	14.0	47.9	8.2	40.7
50th \%ile Term Code	Hold	Hold	Hold	Hold	Hold	Max	Coord	Max	Coord
30th \%ile Green (s)	16.9	16.9	16.9	16.9	16.9	12.4	47.9	8.2	42.3
30th \%ile Term Code	Hold	Hold	Hold	Hold	Hold	Gap	Coord	Max	Coord
10th \%ile Green (s)	16.9	16.9	16.9	16.9	16.9	8.7	48.6	7.5	46.0
10th \%ile Term Code	Hold	Hold	Hold	Hold	Hold	Gap	Coord	Gap	Coord
Stops (vph)		54	13		51	157	393	60	1128
Fuel Used(gal)		1	1		1	5	12	2	38
CO Emissions (g/hr)		78	73		71	331	849	132	2652
NOX Emissions (g/hr)		15	14		14	64	165	26	516
VOC Emissions (g/hr)		18	17		16	77	197	31	615
Dilemma Vehicles (\#)		0	0		0	0	107	0	98
Queue Length 50th (t)		34	0		28	110	85	40	~ 416
Queue Length 95th (ft)		73	35		77	m132	131	m52	m\#592
Internal Link Dist (ft)		651			313		350		1317

Lane Group	$\varnothing 8$
Turn Type	
Protected Phases	8
Permitted Phases	
Detector Phase	
Switch Phase	
Minimum Initial (s)	5.0
Minimum Split (s)	22.5
Total Split (s)	22.5
Total Split (\%)	25\%
Maximum Green (s)	18.0
Yellow Time (s)	3.5
All-Red Time (s)	1.0
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
Vehicle Extension (s)	3.0
Recall Mode	None
Walk Time (s)	7.0
Flash Dont Walk (s)	11.0
Pedestrian Calls (\#/hr)	0
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
90th \%ile Green (s)	18.0
90th \%ile Term Code	Max
70th \%ile Green (s)	18.0
70th \%ile Term Code	Max
50 th \%ile Green (s)	18.0
50th \%ile Term Code	Max
30th \%ile Green (s)	18.0
30th \%ile Term Code	Max
10th \%ile Green (s)	18.0
10th \%ile Term Code	Max
Stops (vph)	
Fuel Used(gal)	
CO Emissions (g/hr)	
NOx Emissions (g/hr)	
VOC Emissions (g/hr)	
Dilemma Vehicles (\#)	
Queue Length 50th (ft)	
Queue Length 95th (ft)	
Internal Link Dist (ft)	

Route 5 Study 04/17/2018 2040 AM Build Condition

Splits and Phases: 201: South Main St (Rt-5) \& Main St (Rt-510)/Prospect Hill Plaza

Lane Group $\quad \varnothing 8$
Turn Bay Length (ft)
Base Capacity (vped)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

	7	4			b	$\frac{1}{1}$
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**		4	T	${ }^{1}$	4
Traffic Volume (vph)	110	62	1183	65	92	1409
Future Volume (vph)	110	62	1183	65	92	1409
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	8	12
Storage Length (ft)	0	0		250	75	
Storage Lanes	1	0		1	1	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor					1.00	
Frt	0.952			0.850		
Flt Protected	0.969				0.950	
Satd. Flow (prot)	1680	0	1743	1615	1564	1776
Flt Permitted	0.969				0.074	
Satd. Flow (perm)	1680	0	1743	1615	122	1776
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	24			71		
Link Speed (mph)	30		45			45
Link Distance (ft)	419		1115			308
Travel Time (s)	9.5		16.9			4.7
Confl. Peds. (\#/hr)					11	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	4\%	5\%	9\%	0\%	0\%	7\%
Adj. Flow (vph)	120	67	1286	71	100	1532
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	187	0	1286	71	100	1532
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	24		0			8
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.20	1.00
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		0	0	0	0
Detector Template						
Leading Detector (ft)	25		0	0	0	0
Trailing Detector (ft)	-5		0	0	0	0
Detector 1 Position(ft)	-5		0	0	0	0
Detector 1 Size(ft)	30		6	20	20	6
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
Turn Type	Prot		NA	$\mathrm{pm}+\mathrm{ov}$	D.P+P	NA
Protected Phases	4		2	4	1	12
Permitted Phases				2	2	
Detector Phase	4					

		$4 \quad 4$				
Lane Group	WBL	WBR NBT	NBR	SBL	SBT	
Switch Phase						
Minimum Initial (s)	5.0	15.0	5.0	5.0		
Minimum Split (s)	9.4	22.8	9.4	9.0		
Total Split (s)	11.0	62.0	11.0	17.0		
Total Split (\%)	12.2\%	68.9\%	12.2\%	18.9\%		
Maximum Green (s)	6.6	54.2	6.6	13.0		
Yellow Time (s)	3.0	4.8	3.0	3.0		
All-Red Time (s)	1.4	3.0	1.4	1.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		
Total Lost Time (s)	4.4	7.8	4.4	4.0		
Lead/Lag		Lag		Lead		
Lead-Lag Optimize?						
Vehicle Extension (s)	1.5	3.0	1.5	3.0		
Recall Mode	None	C-Max	None	Max		
Act Effct Green (s)	6.6	54.2	68.6	71.0	75.0	
Actuated g/C Ratio	0.07	0.60	0.76	0.79	0.83	
v/c Ratio	1.29	1.23	0.06	0.33	1.04	
Control Delay	204.5	128.4	1.2	9.8	29.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	204.5	128.4	1.2	9.8	29.5	
LOS	F	F	A	A	C	
Approach Delay	204.5	121.7			28.3	
Approach LOS	F	F			C	
90th \%ile Green (s)	6.6	54.2	6.6	13.0		
90th \%ile Term Code	Max	Coord	Max	MaxR		
70th \%ile Green (s)	6.6	54.2	6.6	13.0		
70th \%ile Term Code	Max	Coord	Max	MaxR		
50th \%ile Green (s)	6.6	54.2	6.6	13.0		
50th \%ile Term Code	Max	Coord	Max	MaxR		
30th \%ile Green (s)	6.6	54.2	6.6	13.0		
30th \%ile Term Code	Max	Coord	Max	MaxR		
10th \%ile Green (s)	6.6	54.2	6.6	13.0		
10th \%ile Term Code	Max	Coord	Max	MaxR		
Stops (vph)	111	753	6	39	455	
Fuel Used(gal)	8	53	1	1	17	
CO Emissions (g/hr)	583	3713	56	60	1185	
NOx Emissions (g/hr)	113	722	11	12	230	
VOC Emissions (g/hr)	135	861	13	14	275	
Dilemma Vehicles (\#)	0	13	0	0	98	
Queue Length 50th (ft)	~124	~948	2	8	~ 942	
Queue Length 95th (ft)	\#257	\#1138	m9	m19	m429	
Internal Link Dist (ft)	339	1035			228	
Turn Bay Length (ft)			250	75		
Base Capacity (vph)	145	1049	1247	304	1480	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	1.29	1.23	0.06	0.33	1.04	
Route 5 Study 04/17/2018 2040 AM Build Condition						Synchro 10 Report Page 26

Intersection Summary

Splits and Phases: 205: Phelps Rd (CT-191)

	4	\rightarrow		\checkmark			4	4			$\frac{1}{7}$	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	Tr		$4{ }^{4}$		${ }^{7}$	个F		${ }^{*}$	中4	「
Traffic Volume（vph）	570	367	1055	75	283	116	867	570	81	136	346	527
Future Volume（vph）	570	367	1055	75	283	116	867	570	81	136	346	527
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	350		290	0		200	400		0	205		130
Storage Lanes	1		2	0		1	2		0	2		1
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	0.95	0.95	0.88	0.95	0.95	0.95	0.97	0.95	0.95	1.00	0.95	1.00
Ped Bike Factor								1.00		1.00		
Frt			0.850		0.963			0.981				0.850
Flt Protected	0.950	0.989			0.992		0.950			0.950		
Satd．Flow（prot）	1603	1731	2733	0	3146	0	3273	3289	0	1703	3374	1583
Flt Permitted	0.950	0.989			0.992		0.950			0.950		
Satd．Flow（perm）	1603	1731	2733	0	3146	0	3273	3289	0	1700	3374	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			372		39			17				177
Link Speed（mph）		45			35			45			45	
Link Distance（ft）		734			813			1397			571	
Travel Time（s）		11.1			15.8			21.2			8.7	
Confl．Peds．（\＃／hr）									1	1		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	7\％	2\％	4\％	0\％	10\％	15\％	7\％	7\％	10\％	6\％	7\％	2\％
Adj．Flow（vph）	620	399	1147	82	308	126	942	620	88	148	376	573
Shared Lane Traffic（\％）	19\％											
Lane Group Flow（vph）	502	517	1147	0	516	0	942	708	0	148	376	573
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（ft）		33			12			32			24	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		1	2		1	2	0
Detector Template				Left								
Leading Detector（ft）	29	34	29	20	48		34	326		39	326	0
Trailing Detector（ft）	－5	0	－10	0	0		0	150		5	150	0
Detector 1 Position（ft）	－5	0	－10	0	0		0	150		5	150	0
Detector 1 Size（ft）	34	34	39	20	48		34	6		34	6	20
Detector 1 Type	Cl＋Ex	Cl＋Ex	Cl＋Ex	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$		Cl＋Ex	Cl＋Ex		Cl＋Ex	Cl＋Ex	Cl＋Ex
Detector 1 Channel												
Detector 1 Extend（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay（s）	0.0	0.0	8.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position（ft）								320			320	
Detector 2 Size（ft）								6			6	
Detector 2 Type								Cl＋Ex			Cl＋Ex	
Detector 2 Channel												
Detector 2 Extend（s）								0.0			0.0	

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Split	NA	pm+ov	Split	NA		Prot	NA		Prot	NA	pm+ov
Protected Phases	4	4	1	8	8		1	6		5	2	4
Permitted Phases			4								2	2
Detector Phase	4	4	4	8	8		1	6		5	2	2
Switch Phase												
Minimum Initial (s)	9.0	9.0	5.0	9.0	9.0		5.0	15.0		5.0	11.0	9.0
Minimum Split (s)	15.5	15.5	10.9	15.7	15.7		10.9	21.0		10.0	21.0	15.5
Total Split (s)	27.0	27.0	23.0	17.0	17.0		23.0	32.0		14.0	23.0	27.0
Total Split (\%)	30.0\%	30.0\%	25.6\%	18.9\%	18.9\%		25.6\%	35.6\%		15.6\%	25.6\%	30.0\%
Maximum Green (s)	20.5	20.5	17.1	10.3	10.3		17.1	26.0		9.0	17.0	20.5
Yellow Time (s)	3.3	3.3	3.0	4.1	4.1		3.0	4.8		3.0	4.8	3.3
All-Red Time (s)	3.2	3.2	2.9	2.6	2.6		2.9	1.2		2.0	1.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.5	6.5	5.9		6.7		5.9	6.0		5.0	6.0	6.5
Lead/Lag			Lead				Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	2.0	2.0	2.0		2.0	2.5		2.0	2.5	3.0
Recall Mode	None	None	None	None	None		None	C-Min		None	C-Min	None
Act Effct Green (s)	21.6	21.6	39.3		10.3		17.1	25.0		9.0	15.9	43.5
Actuated g/C Ratio	0.24	0.24	0.44		0.11		0.19	0.28		0.10	0.18	0.48
v/c Ratio	1.31	1.25	0.82		1.31		1.52	0.77		0.88	0.63	0.67
Control Delay	187.3	162.1	13.5		188.6		269.3	22.1		69.3	43.5	13.4
Queue Delay	0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.1
Total Delay	187.3	162.1	13.5		188.6		269.3	22.1		69.3	43.5	13.5
LOS	F	F	B		F		F	C		E	D	B
Approach Delay		89.2			188.6			163.2			31.3	
Approach LOS		F			F			F			C	
90th \%ile Green (s)	20.5	20.5	17.1	10.3	10.3		17.1	26.0		9.0	17.0	20.5
90th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	Max
70th \%ile Green (s)	20.5	20.5	17.1	10.3	10.3		17.1	26.0		9.0	17.0	20.5
70th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	Max
50th \%ile Green (s)	20.5	20.5	17.1	10.3	10.3		17.1	26.0		9.0	17.0	20.5
50th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	Max
30th \%ile Green (s)	20.5	20.5	17.1	10.3	10.3		17.1	26.0		9.0	17.0	20.5
30th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	Max
10th \%ile Green (s)	25.9	25.9	17.1	10.3	10.3		17.1	20.8		8.8	11.6	25.9
10th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Gap	Coord	Max
Stops (vph)	344	363	600		343		620	468		113	310	287
Fuel Used(gal)	24	22	15		24		63	15		4	8	7
CO Emissions (g/hr)	1684	1572	1075		1650		4411	1024		268	573	487
NOx Emissions (g/hr)	328	306	209		321		858	199		52	112	95
VOC Emissions (g/hr)	390	364	249		382		1022	237		62	133	113
Dilemma Vehicles (\#)	0	20	0		20		0	57		0	26	0
Queue Length 50th (ft)	~ 402	~ 402	105		~191		~381	131		78	112	119
Queue Length 95th (ft)	\#603	\#606	157		\#294		m\#469	m173		m\#127	m144	m182
Internal Link Dist (ft)		654			733			1317			491	
Turn Bay Length (ft)	350		290				400			205		130
Base Capacity (vph)	384	415	1402		394		621	962		170	637	853
Starvation Cap Reductn	0	0	0		0		0	0		0	0	12

[^8]| | | | | | | | 4 | 7 | | \downarrow | \downarrow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Spillback Cap Reductn | 0 | 0 | | 0 | | 0 | 0 | | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | | 0 | | 0 | 0 | | 0 | 0 | 0 |
| Reduced v/c Ratio 1.31 | 1.25 | 0.82 | | 1.31 | | 1.52 | 0.74 | | 0.87 | 0.59 | 0.68 |
| Intersection Summary | | | | | | | | | | | |
| Area Type: Other | Other | | | | | | | | | | |
| Cycle Length: 90 | | | | | | | | | | | |
| Actuated Cycle Length: 90 | | | | | | | | | | | |
| Offset: $10(11 \%)$, Referenced to phase 2:SBT and 6:NBT, Start of Yellow | | | | | | | | | | | |
| Natural Cycle: 140 | | | | | | | | | | | |
| Control Type: Actuated-Coordinated | | | | | | | | | | | |
| Maximum v/c Ratio: 1.52 | | | | | | | | | | | |
| Intersection Signal Delay: 109.5 | | | Intersection LOS: F | | | | | | | | |
| Intersection Capacity Utilization 94.4\% | | | | ICU Level of Service F | | | | | | | |
| Analysis Period (min) 15 | | | | | | | | | | | |
| ~ Volume exceeds capacity, queue is theoretically infinite. | | | | | | | | | | | |
| Queue shown is maximum after two cycles. | | | | | | | | | | | |
| \# 95th percentile volume exceeds capacity, queue may be longer. | | | | | | | | | | | |
| Queue shown is maximum after two cycles. | | | | | | | | | | | |

m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 209: I-91 Access/Egress/Newberry Rd

	4	\rightarrow		7			4	\dagger	p		\dagger	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	44	「	${ }^{7}$	㤽		${ }^{4} 1$	4	「	${ }^{7}$	F	
Traffic Volume（vph）	200	1035	213	146	445	94	312	517	188	147	279	195
Future Volume（vph）	200	1035	213	146	445	94	312	517	188	147	279	195
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width（ft）	11	11	11	11	11	11	10	11	12	11	12	12
Storage Length（ft）	0		0	260		475	300		200	200		0
Storage Lanes	1		1	1		1	2		1	1		0
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	0.95	0.97	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor									0.99	1.00		
Frt			0.850		0.974				0.850		0.938	
Fit Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1558	3172	1516	1504	3246	0	3083	1640	1442	1517	1517	0
Flt Permitted	0.271			0.154			0.950			0.950		
Satd．Flow（perm）	444	3172	1516	244	3246	0	3083	1640	1423	1515	1517	0
Right Turn on Red			No			No			No			No
Satd．Flow（RTOR）												
Link Speed（mph）		35			45			45			45	
Link Distance（ft）		381			922			908			517	
Travel Time（s）		7.4			14.0			13.8			7.8	
Confl．Peds．（\＃／hr）									1	1		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	12\％	10\％	3\％	16\％	4\％	8\％	6\％	12\％	12\％	15\％	8\％	31\％
Adj．Flow（vph）	217	1125	232	159	484	102	339	562	204	160	303	212
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	217	1125	232	159	586	0	339	562	204	160	515	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（ft）		11			11			20			20	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.09	1.04	1.00	1.04	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		12	15		12
Number of Detectors	1	1	0	1	1		1	1	1	1	1	
Detector Template												
Leading Detector（ft）	29	256	0	30	315		29	29	29	29	29	
Trailing Detector（ft）	－5	250	0	－5	310		－5	－5	－5	－5	－5	
Detector 1 Position（ft）	－5	250	0	－5	310		－5	－5	－5	－5	－5	
Detector 1 Size（ft）	34	6	20	35	5		34	34	34	34	34	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex		$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Turn Type	pm＋pt	NA	pm＋ov	pm＋pt	NA		Prot	NA	pm＋ov	Prot	NA	
Protected Phases	5	2	3	1	6		3	8	1	7	4	
Permitted Phases	2		2	6					8			
Detector Phase	5	2	2	1	6		3	8	8	7	4	

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	6.0	15.0	4.0	6.0	15.0		4.0	9.0	6.0	4.0	5.0	
Minimum Split (s)	11.8	20.5	8.0	12.6	20.5		8.0	15.8	12.6	8.0	11.8	
Total Split (s)	16.2	34.4	12.0	12.6	30.8		12.0	32.0	12.6	11.0	31.0	
Total Split (\%)	18.0\%	38.2\%	13.3\%	14.0\%	34.2\%		13.3\%	35.6\%	14.0\%	12.2\%	34.4\%	
Maximum Green (s)	10.4	28.9	8.0	6.0	25.3		8.0	25.2	6.0	7.0	24.2	
Yellow Time (s)	3.0	4.5	3.0	3.0	4.5		3.0	4.4	3.0	3.0	4.4	
All-Red Time (s)	2.8	1.0	1.0	3.6	1.0		1.0	2.4	3.6	1.0	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.8	5.5	4.0	6.6	5.5		4.0	6.8	6.6	4.0	6.8	
Lead/Lag	Lead	Lag	Lead	Lead	Lag		Lead	Lag	Lead	Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5	4.0	1.5	1.5	4.0		1.5	2.5	1.5	1.5	2.5	
Recall Mode	None	C-Min	None	None	C-Min		None	None	None	None	None	
Act Effct Green (s)	38.4	28.9	42.4	30.8	25.9		8.0	25.2	31.4	7.0	24.2	
Actuated g/C Ratio	0.43	0.32	0.47	0.34	0.29		0.09	0.28	0.35	0.08	0.27	
v/c Ratio	0.70	1.11	0.32	0.95	0.63		1.24	1.22	0.41	1.37	1.27	
Control Delay	23.4	85.3	14.0	82.3	31.7		164.7	145.2	19.6	245.3	168.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	23.4	85.3	14.0	82.3	31.7		164.7	145.2	19.6	245.3	168.6	
LOS	C	F	B	F	C		F	F	B	F	F	
Approach Delay		66.3			42.5			128.0			186.8	
Approach LOS		E			D			F			F	
90th \%ile Green (s)	10.4	28.9	8.0	6.0	25.3		8.0	25.2	6.0	7.0	24.2	
90th \%ile Term Code	Max	Coord	Max	Max	Coord		Max	Max	Max	Max	Max	
70th \%ile Green (s)	10.4	28.9	8.0	6.0	25.3		8.0	25.2	6.0	7.0	24.2	
70th \%ile Term Code	Max	Coord	Max	Max	Coord		Max	Max	Max	Max	Max	
50th \%ile Green (s)	10.4	28.9	8.0	6.0	25.3		8.0	25.2	6.0	7.0	24.2	
50th \%ile Term Code	Max	Coord	Max	Max	Coord		Max	Max	Max	Max	Max	
30th \%ile Green (s)	10.3	28.9	8.0	6.0	25.4		8.0	25.2	6.0	7.0	24.2	
30th \%ile Term Code	Gap	Coord	Max	Max	Coord		Max	Max	Max	Max	Max	
10th \%ile Green (s)	7.6	28.9	8.0	6.0	28.1		8.0	25.2	6.0	7.0	24.2	
10th \%ile Term Code	Gap	Coord	Max	Max	Coord		Max	Max	Max	Max	Max	
Stops (vph)	106	832	119	86	455		250	402	119	110	374	
Fuel Used(gal)	2	27	2	4	12		15	23	3	9	23	
CO Emissions (g/hr)	161	1893	146	307	864		1077	1631	233	643	1573	
NOx Emissions (g/hr)	31	368	28	60	168		210	317	45	125	306	
VOC Emissions (g/hr)	37	439	34	71	200		250	378	54	149	365	
Dilemma Vehicles (\#)	0	55	0	0	30		0	29	0	0	20	
Queue Length 50th (ft)	57	~376	74	54	153		~ 124	~ 394	63	~ 121	~372	
Queue Length 95th (ft)	m91	\#510	m116	\#174	210		\#212	\#595	m122	\#244	\#564	
Internal Link Dist (ft)		301			842			828			437	
Turn Bay Length (ft)				260			300		200	200		
Base Capacity (vph)	321	1018	714	167	933		274	459	497	117	407	
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	
Reduced v/c Ratio	0.68	1.11	0.32	0.95	0.63		1.24	1.22	0.41	1.37	1.27	

Intersection Summary
Area Type: \quad Other
Cycle Length: $90 \quad$ Intersection LOS: F
Actuated Cycle Length: 90
Offset: 36 (40\%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow
Natural Cycle: 140
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.37
Intersection Signal Delay: $98.4 \quad$ ICU Level of Service F
Intersection Capacity Utilization 91.3%
Analysis Period (min) 15
$\sim \quad$ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
$m \quad$ Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 210: N Rd. (CT-140)/N Rd. (CT140)

	\rangle						4	\dagger	7			4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			「		\ddagger			1F			\$4	
Traffic Volume (vph)	0	0	3	150	0	18	0	1205	210	9	1530	3
Future Volume (vph)	0	0	3	150	0	18	0	1205	210	9	1530	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95
Frt			0.865		0.985			0.978				
Flt Protected					0.957							
Satd. Flow (prot)	0	0	1096	0	1754	0	0	3305	0	0	3341	0
Flt Permitted					0.957						0.942	
Satd. Flow (perm)	0	0	1096	0	1754	0	0	3305	0	0	3147	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			50		33			57				
Link Speed (mph)		30			30			50			45	
Link Distance (ft)		417			1615			1146			576	
Travel Time (s)		9.5			36.7			15.6			8.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	50\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	0\%	0\%	50\%	1\%	0\%	11\%	14\%	8\%	0\%	6\%	8\%	50\%
Adj. Flow (vph)	0	0	3	163	0	20	0	1310	228	10	1663	3
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	0	3	0	183	0	0	1538	0	0	1676	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			26			26	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors			0	1	1			0		1	0	
Detector Template				Left						Left		
Leading Detector (ft)			0	20	25			0		20	0	
Trailing Detector (ft)			0	0	0			0		0	0	
Detector 1 Position(ft)			0	0	0			0		0	0	
Detector 1 Size(ft)			20	20	25			0		20	0	
Detector 1 Type			Extend	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)			0.0	0.0	0.0			0.0		0.0	0.0	
Detector 1 Queue (s)			0.0	0.0	0.0			0.0		0.0	0.0	
Detector 1 Delay (s)			0.0	0.0	0.0			0.0		0.0	0.0	
Turn Type			Perm	Perm	NA			NA		Perm	NA	
Protected Phases					4			2			2	
Permitted Phases			4	4						2		
Detector Phase			4	4	4							
Switch Phase												
Minimum Initial (s)			9.0	9.0	9.0			15.0		15.0	15.0	
Minimum Split (s)			13.0	13.0	13.0			20.7		20.7	20.7	
Total Split (s)			19.0	19.0	19.0			71.0		71.0	71.0	
Total Split (\%)			21.1\%	21.1\%	21.1\%			78.9\%		78.9\%	78.9\%	

Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.71
Intersection Signal Delay: 8.6 Intersection LOS: A
Intersection Capacity Utilization 71.0\% ICU Level of Service C
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 211: Crow Park Rd / Scantic Rd

	\rangle			7			4	\dagger	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	7		\uparrow	$\overline{7}$	\%	\uparrow		\%	\uparrow	
Traffic Volume (vph)	15	12	4	76	19	145	4	1294	22	224	1422	43
Future Volume (vph)	15	12	4	76	19	145	4	1294	22	224	1422	43
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	8	12	12	12	12	12	12
Storage Length (ft)	0		80	0		30	120		0	200		0
Storage Lanes	0		1	0		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00	0.97		0.99							
Frt			0.850			0.850		0.997			0.996	
Flt Protected		0.973			0.962		0.950			0.950		
Satd. Flow (prot)	0	1780	1313	0	1828	1400	1703	1734	0	1687	1801	0
Flt Permitted		0.676			0.750		0.092			0.084		
Satd. Flow (perm)	0	1232	1276	0	1416	1400	165	1734	0	149	1801	0
Right Turn on Red			No			Yes			Yes			Yes
Satd. Flow (RTOR)						143		1			2	
Link Speed (mph)		25			35			45			45	
Link Distance (ft)		551			479			2227			334	
Travel Time (s)		15.0			9.3			33.7			5.1	
Confl. Peds. (\#/hr)	1		1	1								
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	7\%	0\%	23\%	0\%	0\%	0\%	6\%	9\%	25\%	7\%	5\%	7\%
Adj. Flow (vph)	16	13	4	83	21	158	4	1407	24	243	1546	47
Shared Lane Trafic (\%)												
Lane Group Flow (vph)	0	29	4	0	104	158	4	1431	0	243	1593	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.20	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1	1	1	3		1	3	
Detector Template	Left			Left								
Leading Detector (ft)	20	20	15	20	25	20	33	326		33	326	
Trailing Detector (t)	0	0	0	0	0	0	-5	0		-5	0	
Detector 1 Position(ft)	0	0	0	0	0	0	-5	0		-5	0	
Detector 1 Size(tt)	20	20	15	20	25	20	38	6		38	6	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$								
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	2.0	8.0	0.0	8.0	8.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)								144			94	
Detector 2 Size(ft)								6			6	
Detector 2 Type								Cl+Ex			Cl+Ex	
Detector 2 Channel												

Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Ideal Flow (vphpl)
Lane Width (ft)
Storage Length (ft)
Storage Lanes
Taper Length (ft)
Lane Util. Factor
Ped Bike Factor
Frt
Flt Protected
Satd. Flow (prot)
Flt Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Confl. Peds. (\#/hr)
Peak Hour Factor
Heavy Vehicles (\%)
Adj. Flow (vph)
Shared Lane Traffic (\%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(ft)
Link Offset(ft)
Crosswalk Width(ft)
Two way Left Turn Lane
Headway Factor
Turning Speed (mph)
Number of Detectors
Detector Template
Leading Detector (ft)
Trailing Detector (ft)
Detector 1 Position(ft)
Detector 1 Size(ft)
Detector 1 Type
Detector 1 Channel
Detector 1 Extend (s)
Detector 1 Queue (s)
Detector 1 Delay (s)
Detector 2 Position(ft)
Detector 2 Size(ft)
Detector 2 Type
Detector 2 Channel

	4						4	4	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Extend (s)								0.0			0.0	
Detector 3 Position(ft)								320			320	
Detector 3 Size(ft)								6			6	
Detector 3 Type								Cl+Ex			Cl+Ex	
Detector 3 Channel												
Detector 3 Extend (s)								0.0			0.0	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases		4			4		5	2		1	6	
Permitted Phases	4		4	4		4	2			6		
Detector Phase	4	4	4	4	4	4	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	4.0	15.0		5.0	15.0	
Minimum Split (s)	9.5	9.5	9.5	9.5	9.5	9.5	8.0	22.8		9.0	22.8	
Total Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	8.0	49.0		9.0	50.0	
Total Split (\%)	11.1\%	11.1\%	11.1\%	11.1\%	11.1\%	11.1\%	8.9\%	54.4\%		10.0\%	55.6\%	
Maximum Green (s)	5.5	5.5	5.5	5.5	5.5	5.5	5.0	41.2		5.0	42.2	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	2.0	4.8		3.0	4.8	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.0	3.0		1.0	3.0	
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.5	4.5		4.5	4.5	3.0	7.8		4.0	7.8	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0	2.0	1.5	2.5		1.5	2.5	
Recall Mode	None	C-Min		None	C-Min							
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (\#hr)												
Act Effct Green (s)		5.5	5.5		5.5	5.5	55.8	46.8		71.9	66.7	
Actuated g/C Ratio		0.06	0.06		0.06	0.06	0.62	0.52		0.80	0.74	
v/c Ratio		0.39	0.05		1.21	0.72	0.02	1.59		0.59	1.19	
Control Delay		55.8	41.5		203.4	29.5	1.2	281.0		25.5	100.4	
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		55.8	41.5		203.4	29.5	1.2	281.0		25.5	100.4	
LOS		E	D		F	C	A	F		C	F	
Approach Delay		54.1			98.5			280.2			90.5	
Approach LOS		D			F			F			F	
90th \%ile Green (s)	5.5	5.5	5.5	5.5	5.5	5.5	4.4	41.2		7.0	44.8	
90th \%ile Term Code	Max	Max	Max	Max	Max	Max	Gap	Coord		Max	Coord	
70th \%ile Green (s)	5.5	5.5	5.5	5.5	5.5	5.5	0.0	51.3		16.9	72.2	
70th \%ile Term Code	Max	Max	Max	Max	Max	Max	Skip	Coord		Gap	Coord	
50th \%ile Green (s)	5.5	5.5	5.5	5.5	5.5	5.5	0.0	51.0		17.2	72.2	
50th \%ile Term Code	Max	Max	Max	Max	Max	Max	Skip	Coord		Gap	Coord	
30th \%ile Green (s)	5.5	5.5	5.5	5.5	5.5	5.5	0.0	49.2		19.0	72.2	
30th \%ile Term Code	Max	Max	Max	Max	Max	Max	Skip	Coord		Gap	Coord	
10th \%ile Green (s)	5.5	5.5	5.5	5.5	5.5	5.5	0.0	41.4		26.8	72.2	
10th \%ile Term Code	Max	Max	Max	Max	Max	Max	Skip	Coord		Gap	Coord	
Stops (vph)		28	7		71	28	1	776		199	446	
Fuel Used(gal)		1	0		5	2	0	113		4	39	
CO Emissions (g/hr)		38	6		338	111	7	7894		288	2705	

Lane Group	$\emptyset 3$	
Detector 2 Extend (s)		
Detector 3 Position(ft)		
Detector 3 Size(ft)		
Detector 3 Type		
Detector 3 Channel		
Detector 3 Extend (s)		
Turn Type		
Protected Phases	3	
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	7.0	
Minimum Split (s)	22.0	
Total Split (s)	22.0	
Total Split (\%)	24\%	
Maximum Green (s)	18.0	
Yellow Time (s)	4.0	
All-Red Time (s)	0.0	
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lag	
Lead-Lag Optimize?		
Vehicle Extension (s)	3.0	
Recall Mode	None	
Walk Time (s)	7.0	
Flash Dont Walk (s)	9.0	
Pedestrian Calls (\#/hr)	10	
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
90th \%ile Green (s)	16.0	
90th \%ile Term Code	Ped	
70th \%ile Green (s)	0.0	
70th \%ile Term Code	Skip	
50th \%ile Green (s)	0.0	
50th \%ile Term Code	Skip	
30th \%ile Green (s)	0.0	
30th \%ile Term Code	Skip	
10th \%ile Green (s)	0.0	
10th \%ile Term Code	Skip	
Stops (vph)		
Fuel Used(gal)		
CO Emissions (g/hr)		
Route 5 Study 04/17/2 SFM	0 AM Build Condition	Synchro 10 Report Page 40

4							\dagger	p		\downarrow	\checkmark
Lane Group EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
NOx Emissions (g/hr)	7	1		66	22	1	1536		56	526	
VOC Emissions (g/hr)	9	1		78	26	2	1829		67	627	
Dilemma Vehicles (\#)	0	0		4	0	0	28		0	5	
Queue Length 50th (tt)	16	2		~ 73	8	0	~1115		68	~1071	
Queue Length 95th (ft)	\#46	13		\#174	\#97	m0	m\#950		m55	m\#966	
Internal Link Dist (t)	471			399			2147			254	
Turn Bay Length (ft)		80			30	120			200		
Base Capacity (vph)	75	77		86	219	189	902		415	1335	
Starvation Cap Reductn	0	0		0	0	0	0		0	0	
Spillback Cap Reductn	0	0		0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0		0	0	
Reduced v/c Ratio	0.39	0.05		1.21	0.72	0.02	1.59		0.59	1.19	
Intersection Summary											
Area Type: Other											
Cycle Length: 90											
Actuated Cycle Length: 90											
Offset: 38 (42\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow											
Natural Cycle: 150											
Control Type: Actuated-Coordinated											
Maximum v/c Ratio: 1.59											
Intersection Signal Delay: 167.1				Intersection LOS: F							
Intersection Capacity Utilization 107.3\%				ICU Level of Service G							
Analysis Period (min) 15											
~ Volume exceeds capacity, queue is theoretically infinite.											
Queue shown is maximum after two cycles.											
\# 95th percentile volume exceeds capacity, queue may be longer.											
Queue shown is maximum after two cycles.											
m Volume for 95th percentile queue is	etere	by ups	m sig								

Splits and Phases: 213: Tromley Rd

Lane Group $\quad \emptyset 3$
NOx Emissions (g/hr)
VOC Emissions (g/hr)
Dilemma Vehicles (\#)
Queue Length 50th (ft)
Queue Length 95th (ft)
Internal Link Dist (ft)
Turn Bay Length (ft)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\uparrow		\%	F			\uparrow	F
Traffic Volume (vph)	13	0	22	2		12	5	1203	24	22	1509	23
Future Volume (vph)	13	0	22	2	2	12	5	1203	24	22	1509	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	8	12	12	12	8	12	12	8	12	8
Storage Length (ft)	0		30	0		0	50		0	0		50
Storage Lanes	0		1	0		0	1		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.897			0.997				0.850
Flt Protected		0.950			0.994		0.950				0.999	
Satd. Flow (prot)	0	1641	1386	0	1499	0	1384	1773	0	0	1748	1386
Flt Permitted					0.955		0.053				0.964	
Satd. Flow (perm)	0	1727	1386	0	1440	0	77	1773	0	0	1686	1386
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			48		13			4				16
Link Speed (mph)		25			35			45			45	
Link Distance (ft)		801			1499			2677			1892	
Travel Time (s)		21.8			29.2			40.6			28.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	10\%	0\%	1\%	0\%	0\%	17\%	13\%	7\%	0\%	50\%	8\%	1\%
Adj. Flow (vph)	14	0	24	2	2	13	5	1308	26	24	1640	25

Shared Lane Traffic (\%)

Lane Group Flow (vph)	0	14	24	0	17	0	5	1334	0	0	1664	25
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		10			0			8			8	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.20	1.00	1.00	1.00	1.20	1.00	1.00	1.20	1.00	1.20
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		0	0		0	0	1
Detector Template	Left		Right	Left								Right
Leading Detector (ft)	20	20	20	20	29		0	0		0	0	20
Trailing Detector (ft)	0	0	0	0	-5		0	0		0	0	0
Detector 1 Position(ft)	0	0	0	0	-5		0	0		0	0	0
Detector 1 Size(ft)	20	20	20	20	34		20	6		20	6	20
Detector 1 Type	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases		4			4			2				

Permitted Phases	4		4	4		2	2
Detector Phase	4	4	4	4	4	2	
Switch Phase						2	

Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	15.0	15.0	15.0	15.0	15.0

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	9.3	9.3	9.3	9.3	9.3		22.0	22.0		22.0	22.0	22.0
Total Split (s)	9.3	9.3	9.3	9.3	9.3		80.7	80.7		80.7	80.7	80.7
Total Split (\%)	10.3\%	10.3\%	10.3\%	10.3\%	10.3\%		89.7\%	89.7\%		89.7\%	89.7\%	89.7\%
Maximum Green (s)	5.0	5.0	5.0	5.0	5.0		73.7	73.7		73.7	73.7	73.7
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		4.8	4.8		4.8	4.8	4.8
All-Red Time (s)	1.3	1.3	1.3	1.3	1.3		2.2	2.2		2.2	2.2	2.2
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)		4.3	4.3		4.3		7.0	7.0			7.0	7.0
Lead/Lag	Lag	Lag	Lag	Lag	Lag		Lead	Lead		Lead	Lead	Lead
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5	1.5	1.5	1.5	1.5		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None	None	None	None		C-Max	C-Max		C-Max	C-Max	C-Max
Act Effct Green (s)		5.0	5.0		5.0		80.2	80.2			80.2	80.2
Actuated g/C Ratio		0.06	0.06		0.06		0.89	0.89			0.89	0.89
v/c Ratio		0.15	0.20		0.18		0.07	0.84			1.11	0.02
Control Delay		44.2	8.4		28.3		3.6	15.1			62.7	1.2
Queue Delay		0.0	0.0		0.0		0.0	0.0			0.0	0.0
Total Delay		44.2	8.4		28.3		3.6	15.1			62.7	1.2
LOS		D	A		C		A	B			E	A
Approach Delay		21.5			28.3			15.1			61.8	
Approach LOS		C			C			B			E	
90th \%ile Green (s)	5.0	5.0	5.0	5.0	5.0		73.7	73.7		73.7	73.7	73.7
90th \%ile Term Code	Max	Max	Max	Max	Max		Coord	Coord		Coord	Coord	Coord
70th \%ile Green (s)	5.0	5.0	5.0	5.0	5.0		73.7	73.7		73.7	73.7	73.7
70th \%ile Term Code	Max	Max	Max	Max	Max		Coord	Coord		Coord	Coord	Coord
50th \%ile Green (s)	5.0	5.0	5.0	5.0	5.0		73.7	73.7		73.7	73.7	73.7
50th \%ile Term Code	Max	Max	Max	Max	Max		Coord	Coord		Coord	Coord	Coord
30th \%ile Green (s)	0.0	0.0	0.0	0.0	0.0		83.0	83.0		83.0	83.0	83.0
30th \%ile Term Code	Skip	Skip	Skip	Skip	Skip		Coord	Coord		Coord	Coord	Coord
10th \%ile Green (s)	0.0	0.0	0.0	0.0	0.0		83.0	83.0		83.0	83.0	83.0
10th \%ile Term Code	Skip	Skip	Skip	Skip	Skip		Coord	Coord		Coord	Coord	Coord
Stops (vph)		15	3		10		1	632			666	3
Fuel Used(gal)		0	0		0		0	33			47	0
CO Emissions (g/hr)		18	14		24		7	2304			3259	23
NOx Emissions (g/hr)		4	3		5		1	448			634	4
VOC Emissions (g/hr)		4	3		6		2	534			755	5
Dilemma Vehicles (\#)		0	0		1		0	43			49	0
Queue Length 50th (ft)		8	0		2		0	327			~ 1167	1
Queue Length 95th (ft)		27	11		23		m1	\#630			m\#986	m1
Internal Link Dist (ft)		721			1419			2597			1812	
Turn Bay Length (ft)			30				50					50
Base Capacity (vph)		95	122		92		69	1580			1502	1237
Starvation Cap Reductn		0	0		0		0	0			0	0
Spillback Cap Reductn		0	0		0		0	0			0	0
Storage Cap Reductn		0	0		0		0	0			0	0
Reduced v/c Ratio		0.15	0.20		0.18		0.07	0.84			1.11	0.02

Intersection Summary

Area Type: Other

Cycle Length: 90
Actuated Cycle Length: 90
Offset: $4(4 \%)$, Referenced to phase 2:NBSB, Start of Yellow
Natural Cycle: 150
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.11
Intersection Signal Delay: $40.8 \quad$ Intersection LOS: D

Intersection Capacity Utilization 110.6\% ICU Level of Service H
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 214: DD/Abbe Rd

	4						4	4	\%	V		4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\&		${ }^{7}$	\uparrow		${ }^{*}$	$\hat{\beta}$	
Traffic Volume (vph)	110	6	168	5	4	14	169	1334	13	26	1515	14
Future Volume (vph)	110	6	168	5	4	14	169	1334	13	26	1515	14
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		300	0		0	150		0	320		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.916			0.999			0.999	
Flt Protected		0.955			0.990		0.950			0.950		
Satd. Flow (prot)	0	1814	1599	0	1723	0	1719	1759	0	1805	1775	0
Flt Permitted		0.720			0.790		0.062			0.065		
Satd. Flow (perm)	0	1368	1599	0	1375	0	112	1759	0	124	1775	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			122		15			1			1	
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		1143			286			1978			934	
Travel Time (s)		26.0			6.5			30.0			14.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	0\%	1\%	0\%	0\%	0\%	5\%	8\%	0\%	0\%	7\%	0\%
Adj. Flow (vph)	120	7	183	5	4	15	184	1450	14	28	1647	15
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	127	183	0	24	0	184	1464	0	28	1662	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		1	0		1	0	
Detector Template	Left		Right	Left								
Leading Detector (ft)	20	45	20	20	45		15	0		15	0	
Trailing Detector (ft)	0	-5	0	0	-5		-5	0		-5	0	
Detector 1 Position(ft)	0	-5	0	0	-5		-5	0		-5	0	
Detector 1 Size(ft)	20	50	20	20	50		20	6		20	6	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	Perm	NA	Perm	Perm	NA		pm+pt	NA		pm+pt	NA	
Protected Phases		4			4		1	6		5	2	
Permitted Phases	4		4	4			6			2		
Detector Phase	4	4	4	4	4		1			5		
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	15.0		5.0	15.0	
Minimum Split (s)	10.1	10.1	10.1	10.1	10.1		9.0	22.3		9.0	22.3	

	4	\rightarrow		7			4	4			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	12.0	12.0	12.0	12.0	12.0		9.0	69.0		9.0	69.0	
Total Split (\%)	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%		10.0\%	76.7\%		10.0\%	76.7\%	
Maximum Green (s)	6.9	6.9	6.9	6.9	6.9		5.0	61.7		5.0	61.7	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.0	4.8		3.0	4.8	
All-Red Time (s)	1.8	1.8	1.8	1.8	1.8		1.0	2.5		1.0	2.5	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		5.1	5.1		5.1		4.0	7.3		4.0	7.3	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5	1.5	1.5	1.5	1.5		1.5	3.0		1.5	3.0	
Recall Mode	None	None	None	None	None		None	C-Max		None	C-Max	
Act Efft Green (s)		6.9	6.9		6.9		72.4	67.1		70.0	61.7	
Actuated g/C Ratio		0.08	0.08		0.08		0.80	0.75		0.78	0.69	
v/c Ratio		1.22	0.78		0.20		1.03	1.12		0.15	1.37	
Control Delay		197.8	39.1		27.9		61.9	67.2		3.9	192.9	
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Delay		197.8	39.1		27.9		61.9	67.2		3.9	192.9	
LOS		F	D		C		E	E		A	F	
Approach Delay		104.1			27.9			66.6			189.7	
Approach LOS		F			C			E			F	
90th \%ile Green (s)	6.9	6.9	6.9	6.9	6.9		5.0	61.7		5.0	61.7	
90th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	
70th \%ile Green (s)	6.9	6.9	6.9	6.9	6.9		5.0	61.7		5.0	61.7	
70th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Max	Coord	
50th \%ile Green (s)	6.9	6.9	6.9	6.9	6.9		5.0	70.7		0.0	61.7	
50th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Skip	Coord	
30th \%ile Green (s)	6.9	6.9	6.9	6.9	6.9		5.0	70.7		0.0	61.7	
30th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Skip	Coord	
10th \%ile Green (s)	6.9	6.9	6.9	6.9	6.9		5.0	70.7		0.0	61.7	
10th \%ile Term Code	Max	Max	Max	Max	Max		Max	Coord		Skip	Coord	
Stops (vph)		87	56		15		167	521		9	1062	
Fuel Used(gal)		6	3		0		6	42		0	83	
CO Emissions (g/hr)		436	220		18		446	2950		20	5768	
NOX Emissions (g/hr)		85	43		3		87	574		4	1122	
VOC Emissions (g/hr)		101	51		4		103	684		5	1337	
Dilemma Vehicles (\#)		0	0		0		0	9		0	120	
Queue Length 50th (ft)		~89	34		5		~ 65	~ 961		4	~1233	
Queue Length 95th (ft)		\#200	\#140		29		m45	m85		m5	\#1502	
Internal Link Dist (ft)		1063			206			1898			854	
Turn Bay Length (ft)			300				150			320		
Base Capacity (vph)		104	235		119		179	1312		189	1217	
Starvation Cap Reductn		0	0		0		0	0		0	0	
Spillback Cap Reductn		0	0		0		0	0		0	0	
Storage Cap Reductn		0	0		0		0	0		0	0	
Reduced v/c Ratio		1.22	0.78		0.20		1.03	1.12		0.15	1.37	
Intersection Summary												
Area Type: Cycle Length: 90	Other											

Actuated Cycle Length: 90
Offset: 0 (0\%), Referenced to phase 2:SBTL and 6:NBTL, Start of Yellow
Natural Cycle: 150
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.37
Intersection Signal Delay: 126.2 Intersection LOS: F
Intersection Capacity Utilization 116.7\% ICU Level of Service H
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 215: S Water St

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$	「	\%	\uparrow		${ }^{*}$	F	
Traffic Volume (vph)	8	3	3	67	0	25	5	1160	68	41	1484	12
Future Volume (vph)	8	3	3	67	0	25	5	1160	68	41	1484	12
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	8	8	12	12	8	12	12
Storage Length (ft)	0		0	0		50	50		0	50		0
Storage Lanes	0		0	0		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.99			0.99	0.97						
Frt		0.973				0.850		0.992			0.999	
Flt Protected		0.971			0.950		0.950			0.950		
Satd. Flow (prot)	0	1785	0	0	1612	1400	1564	1744	0	1448	1775	0
Flt Permitted		0.774			0.800		0.054			0.108		
Satd. Flow (perm)	0	1416	0	0	1345	1359	89	1744	0	165	1775	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3				41		14			2	
Link Speed (mph)		30			35			45			45	
Link Distance (ft)		411			816			1892			693	
Travel Time (s)		9.3			15.9			28.7			10.5	
Confl. Peds. (\#/hr)	1		1	1		1						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	0\%	0\%	12\%	0\%	0\%	0\%	8\%	9\%	8\%	7\%	0\%
Adj. Flow (vph)	9	3	3	73	0	27	5	1261	74	45	1613	13
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	15	0	0	73	27	5	1335	0	45	1626	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			8			8	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.00	1.00	1.20	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1	1	0	0		0	0	
Detector Template	Left			Left		Right						
Leading Detector (ft)	20	12		20	36	20	0	0		0	0	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	12		20	36	20	20	36		20	6	
Detector 1 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		4			4			2			2	
Permitted Phases	4			4		4	2			2		
Detector Phase	4	4		4	4	4						

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	15.0	15.0		15.0	15.0	
Minimum Split (s)	9.0	9.0		9.0	9.0	9.0	21.4	21.4		21.4	21.4	
Total Split (s)	9.0	9.0		9.0	9.0	9.0	81.0	81.0		81.0	81.0	
Total Split (\%)	10.0\%	10.0\%		10.0\%	10.0\%	10.0\%	90.0\%	90.0\%		90.0\%	90.0\%	
Maximum Green (s)	5.0	5.0		5.0	5.0	5.0	74.6	74.6		74.6	74.6	
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	4.8	4.8		4.8	4.8	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.6	1.6		1.6	1.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.0			4.0	4.0	6.4	6.4		6.4	6.4	
Lead/Lag	Lag	Lag		Lag	Lag	Lag	Lead	Lead		Lead	Lead	
Lead-Lag Optimize?												
Vehicle Extension (s)	1.5	1.5		1.5	1.5	1.5	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	C-Max	C-Max		C-Max	C-Max	
Act Effct Green (s)		5.0			5.0	5.0	74.6	74.6		74.6	74.6	
Actuated g/C Ratio		0.06			0.06	0.06	0.83	0.83		0.83	0.83	
v/c Ratio		0.19			0.99	0.24	0.07	0.92		0.33	1.11	
Control Delay		41.1			147.8	13.3	2.6	11.2		5.0	65.7	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		41.1			147.8	13.3	2.6	11.2		5.0	65.7	
LOS		D			F	B	A	B		A	E	
Approach Delay		41.1			111.5			11.2			64.1	
Approach LOS		D			F			B			E	
90th \%ile Green (s)	5.0	5.0		5.0	5.0	5.0	74.6	74.6		74.6	74.6	
90th \%ile Term Code	Max	Max		Max	Max	Max	Coord	Coord		Coord	Coord	
70th \%ile Green (s)	5.0	5.0		5.0	5.0	5.0	74.6	74.6		74.6	74.6	
70th \%ile Term Code	Max	Max		Max	Max	Max	Coord	Coord		Coord	Coord	
50th \%ile Green (s)	5.0	5.0		5.0	5.0	5.0	74.6	74.6		74.6	74.6	
50th \%ile Term Code	Max	Max		Max	Max	Max	Coord	Coord		Coord	Coord	
30th \%ile Green (s)	5.0	5.0		5.0	5.0	5.0	74.6	74.6		74.6	74.6	
30th \%ile Term Code	Max	Max		Max	Max	Max	Coord	Coord		Coord	Coord	
10th \%ile Green (s)	5.0	5.0		5.0	5.0	5.0	74.6	74.6		74.6	74.6	
10th \%ile Term Code	Max	Max		Max	Max	Max	Coord	Coord		Coord	Coord	
Stops (vph)		14			50	6	1	268		2	801	
Fuel Used(gal)		0			3	0	0	21		0	40	
CO Emissions (g/hr)		17			195	18	5	1483		29	2766	
NOx Emissions (g/hr)		3			38	4	1	289		6	538	
VOC Emissions (g/hr)		4			45	4	1	344		7	641	
Dilemma Vehicles (\#)		0			3	0	0	81		0	23	
Queue Length 50th (ft)		7			42	0	0	141		1	~1084	
Queue Length 95th (ft)		27			\#130	18	m1	\#974		m1	\#1348	
Internal Link Dist (ft)		331			736			1812			613	
Turn Bay Length (ft)						50	50			50		
Base Capacity (vph)		81			74	114	73	1447		136	1471	
Starvation Cap Reductn		0			0	0	0	0		0	0	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.19			0.99	0.24	0.07	0.92		0.33	1.11	

Intersection Summary
Area Type: \quad Other
Cycle Length: $90 \quad$ Intersection LOS: D
Actuated Cycle Length: 90
Offset: 22 (24\%), Referenced to phase 2:NBSB, Start of Yellow
Natural Cycle: 140
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.11
Intersection Signal Delay: $42.8 \quad$ ICU Level of Service F
Intersection Capacity Utilization 95.0\%
Analysis Period (min) 15
$\sim \quad$ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
$m \quad$ Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 216: Stoughton Rd

	4	\rightarrow	\%			4	4	4	\%	(\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow		${ }^{7}$	4						\uparrow	7
Traffic Volume (vph)	0	554	124	413	488	0	0	0	0	240	0	235
Future Volume (vph)	0	554	124	413	488	0	0	0	0	240	0	235
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	0		0	0		50
Storage Lanes	0		0	1		0	0		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.975										0.850
Flt Protected				0.950							0.950	
Satd. Flow (prot)	0	1816	0	1770	1863	0	0	0	0	0	1770	1583
Flt Permitted				0.102							0.950	
Satd. Flow (perm)	0	1816	0	190	1863	0	0	0	0	0	1770	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		16										141
Link Speed (mph)		30			35			30			30	
Link Distance (ft)		684			478			428			360	
Travel Time (s)		15.5			9.3			9.7			8.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	602	135	449	530	0	0	0	0	261	0	255
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	737	0	449	530	0	0	0	0	0	261	255
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors		0		1	0					1	1	1
Detector Template										Left		
Leading Detector (ft)		0		36	0					20	15	15
Trailing Detector (ft)		0		0	0					0	0	0
Detector 1 Position(ft)		0		0	0					0	0	0
Detector 1 Size(ft)		6		36	6					20	15	15
Detector 1 Type		$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$					$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel												
Detector 1 Extend (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Queue (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Delay (s)		0.0		0.0	0.0					0.0	6.0	6.0
Turn Type		NA		D.P+P	NA					Split	NA	Prot
Protected Phases		2		3	32					4	4	4
Permitted Phases				2								
Detector Phase				3						4	4	4
Switch Phase												
Minimum Initial (s)		20.0		5.0						5.0	5.0	5.0
Minimum Split (s)		25.5		9.9						10.3	10.3	10.3
Total Split (s)		44.7		25.0						20.3	20.3	20.3

	$\stackrel{7}{ }$			\dagger			4	\uparrow			\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (\%)		49.7\%		27.8\%						22.6\%	22.6\%	22.6\%
Maximum Green (s)		39.2		20.1						15.0	15.0	15.0
Yellow Time (s)		4.5		3.9						3.0	3.0	3.0
All-Red Time (s)		1.0		1.0						2.3	2.3	2.3
Lost Time Adjust (s)		0.0		0.0							0.0	0.0
Total Lost Time (s)		5.5		4.9							5.3	5.3
Lead/Lag		Lead		Lag								
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0		2.0						3.0	3.0	3.0
Recall Mode		C-Max		None						None	None	None
Act Effct Green (s)		39.8		60.1	65.0						14.8	14.8
Actuated g/C Ratio		0.44		0.67	0.72						0.16	0.16
v/c Ratio		0.91		0.95	0.39						0.90	0.67
Control Delay		40.3		63.5	9.3						70.6	25.7
Queue Delay		0.0		0.0	2.6						0.0	0.0
Total Delay		40.3		63.5	11.9						70.6	25.7
LOS		D		E	B						E	C
Approach Delay		40.3			35.5						48.4	
Approach LOS		D			D						D	
90th \%ile Green (s)		39.2		20.1						15.0	15.0	15.0
90th \%ile Term Code		Coord		Max						Max	Max	Max
70th \%ile Green (s)		39.2		20.1						15.0	15.0	15.0
70th \%ile Term Code		Coord		Max						Max	Max	Max
50th \%ile Green (s)		39.2		20.1						15.0	15.0	15.0
50th \%ile Term Code		Coord		Max						Max	Max	Max
30th \%ile Green (s)		39.2		20.1						15.0	15.0	15.0
30th \%ile Term Code		Coord		Max						Max	Max	Max
10th \%ile Green (s)		42.4		17.9						14.0	14.0	14.0
10th \%ile Term Code		Coord		Gap						Gap	Gap	Gap
Stops (vph)		557		592	331						210	104
Fuel Used(gal)		12		11	5						5	2
CO Emissions (g/hr)		857		784	356						369	172
NOX Emissions (g/hr)		167		153	69						72	34
VOC Emissions (g/hr)		199		182	83						86	40
Dilemma Vehicles (\#)		0		0	51						0	0
Queue Length 50th (ft)		376		208	200						147	59
Queue Length 95th (ft)		\#615		\#400	287						\#285	142
Internal Link Dist (ft)		604			398			348			280	
Turn Bay Length (tt)												50
Base Capacity (vph)		813		480	1345						295	381
Starvation Cap Reductn		0		0	671						0	0
Spillback Cap Reductn		0		0	0						0	0
Storage Cap Reductn		0		0	0						0	0
Reduced v/c Ratio		0.91		0.94	0.79						0.88	0.67

Intersection Summary

Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 90

Offset: 86 (96%), Referenced to phase 2:EBWB, Start of Yellow
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.95
Intersection Signal Delay: 40.1 Intersection LOS: D
Intersection Capacity Utilization 86.0\% ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 219: Bridge St (CT-140)

	4	\rightarrow	\%	7	\Perp	4	4	4	\%	V	\downarrow	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		* \uparrow			44			4	Tr			
Traffic Volume (vph)	178	616	0	0	685	267	216	0	735	0	0	0
Future Volume (vph)	178	616	0	0	685	267	216	0	735	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	250		300	0		0
Storage Lanes	0		0	0		0	1		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.95	0.95	1.00	1.00	0.95	0.95	1.00	1.00	0.88	1.00	1.00	1.00
Frt					0.958				0.850			
Flt Protected		0.989						0.950				
Satd. Flow (prot)	0	3500	0	0	3391	0	0	1770	2787	0	0	0
Flt Permitted		0.538						0.950				
Satd. Flow (perm)	0	1904	0	0	3391	0	0	1770	2787	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					78				281			
Link Speed (mph)		35			35			30			30	
Link Distance (ft)		478			323			585			321	
Travel Time (s)		9.3			6.3			13.3			7.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	193	670	0	0	745	290	235	0	799	0	0	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	863	0	0	1035	0	0	235	799	0	0	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			6			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2			0		1	1	1			
Detector Template	Left	Thru					Left					
Leading Detector (ft)	20	100			0		20	6	21			
Trailing Detector (ft)	0	0			0		0	0	-3			
Detector 1 Position(ft)	0	0			0		0	0	-3			
Detector 1 Size(ft)	20	6			6		20	6	24			
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex			
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Detector 1 Queue (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Detector 1 Delay (s)	0.0	0.0			0.0		0.0	0.0	9.0			
Detector 2 Position(ft)		94										
Detector 2 Size(ft)		6										
Detector 2 Type		Cl+Ex										
Detector 2 Channel												
Detector 2 Extend (s)		0.0										
Turn Type	custom	NA			NA		Split	NA	custom			
Protected Phases	3	23			25		4	4	45			
Permitted Phases	2											

Lane Group $\quad \varnothing 2 \quad \emptyset 5$
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Ideal Flow (vphpl)
Storage Length (ft)
Storage Lanes
Taper Length (ft)
Lane Util. Factor
Frt
Flt Protected
Satd. Flow (prot)
Flt Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Peak Hour Factor
Adj. Flow (vph)
Shared Lane Traffic (\%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(ft)
Link Offset(ft)
Crosswalk Width(ft)
Two way Left Turn Lane
Headway Factor
Turning Speed (mph)
Number of Detectors
Detector Template
Leading Detector (ft)
Trailing Detector (ft)
Detector 1 Position(ft)
Detector 1 Size(ft)
Detector 1 Type
Detector 1 Channel
Detector 1 Extend (s)
Detector 1 Queue (s)
Detector 1 Delay (s)
Detector 2 Position(ft)
Detector 2 Size(ft)
Detector 2 Type
Detector 2 Channel
Detector 2 Extend (s)
Turn Type
Protected Phases

	4							\uparrow	p		$\frac{1}{1}$	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	3	3					4	4	5			
Switch Phase												
Minimum Initial (s)	5.0						7.0	7.0				
Minimum Split (s)	10.4						12.1	12.1				
Total Split (s)	24.1						22.0	22.0				
Total Split (\%)	26.8\%						24.4\%	24.4\%				
Maximum Green (s)	18.7						16.9	16.9				
Yellow Time (s)	4.1						3.0	3.0				
All-Red Time (s)	1.3						2.1	2.1				
Lost Time Adjust (s)								0.0				
Total Lost Time (s)								5.1				
Lead/Lag	Lag						Lead	Lead				
Lead-Lag Optimize?												
Vehicle Extension (s)	2.5						3.0	3.0				
Recall Mode	Max						None	None				
Act Effct Green (s)		43.6			38.9			15.4	28.3			
Actuated g/C Ratio		0.48			0.43			0.17	0.31			
v/c Ratio		0.70			0.69			0.78	0.75			
Control Delay		8.9			11.3			53.8	21.8			
Queue Delay		0.0			0.0			0.0	0.0			
Total Delay		8.9			11.4			53.8	21.8			
LOS		A			B			D	C			
Approach Delay		8.9			11.4			29.1				
Approach LOS		A			B			C				
90th \%ile Green (s)	18.7						16.9	16.9				
90th \%ile Term Code	MaxR						Max	Max				
70th \%ile Green (s)	18.7						16.9	16.9				
70th \%ile Term Code	MaxR						Max	Max				
50th \%ile Green (s)	18.7						16.9	16.9				
50th \%ile Term Code	MaxR						Max	Max				
30th \%ile Green (s)	18.7						14.9	14.9				
30th \%ile Term Code	MaxR						Gap	Gap				
10th \%ile Green (s)	18.7						11.3	11.3				
10th \%ile Term Code	MaxR						Gap	Gap				
Stops (vph)		373			711			197	428			
Fuel Used(gal)		7			10			4	9			
CO Emissions (g/hr)		489			682			310	628			
NOx Emissions (g/hr)		95			133			60	122			
VOC Emissions (g/hr)		113			158			72	145			
Dilemma Vehicles (\#)		133			15			0	0			
Queue Length 50th (ft)		12			182			126	150			
Queue Length 95th (ft)		m108			m98			\#226	204			
Internal Link Dist (ft)		398			243			505			241	
Turn Bay Length (ft)									300			
Base Capacity (vph)		1234			1510			332	1182			
Starvation Cap Reductn		0			0			0	0			
Spillback Cap Reductn		0			18			0	0			
Storage Cap Reductn		0			0			0	0			
Reduced v/c Ratio		0.70			0.69			0.71	0.68			

Lane Group	$\emptyset 2$	$\emptyset 5$
Detector Phase		
Switch Phase		
Minimum Initial (s)	15.0	5.0
Minimum Split (s)	21.5	10.7
Total Split (s)	26.9	17.0
Total Split (\%)	30\%	19\%
Maximum Green (s)	20.4	11.3
Yellow Time (s)	4.5	4.5
All-Red Time (s)	2.0	1.2
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lag
Lead-Lag Optimize?		
Vehicle Extension (s)	3.0	1.5
Recall Mode	C-Max	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
90th \%ile Green (s)	20.4	11.3
90th \%ile Term Code	Coord	Max
70th \%ile Green (s)	22.6	9.1
70th \%ile Term Code	Coord	Gap
50 th \%ile Green (s)	26.1	5.6
50th \%ile Term Code	Coord	Gap
30th \%ile Green (s)	28.7	5.0
30th \%ile Term Code	Coord	Min
10th \%ile Green (s)	32.3	5.0
10th \%ile Term Code	Coord	Min
Stops (vph)		
Fuel Used(gal)		
CO Emissions (g/hr)		
NOx Emissions (g/hr)		
VOC Emissions (g/hr)		
Dilemma Vehicles (\#)		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		

Route 5 Study 04/17/2018 2040 AM Build Condition
Synchro 10 Report
SFM
Page 58

Intersection Summary \quad Other
Area Type: \quad Cycle Length: $90 \quad$ Intersection LOS: B
Actuated Cycle Length: 90
Offset: 66 (73\%), Referenced to phase 2:EBWB, Start of Yellow
Natural Cycle: 70
Control Type: Actuated-Coordinated
Maximum v/c Ratio: $0.78 \quad$ ICU Level of Service D
Intersection Signal Delay: $16.9 \quad$
Intersection Capacity Utilization 76.7%
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
$m \quad$ Volume for 95 th percentile queue is metered by upstream signal.

Splits and Phases: 220: Bridge St (CT-140)

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\uparrow	F		+1\%			+ ${ }^{\text {d }}$	
Traffic Volume (vph)	12	4	17	52	8	56	16	1178	15	30	1468	15
Future Volume (vph)	12	4	17	52	8	56	16	1178	15	30	1468	15
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	0		0	200		0
Storage Lanes	0		0	0		1	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Frt		0.931				0.850		0.998			0.999	
Flt Protected		0.982			0.959			0.999			0.999	
Satd. Flow (prot)	0	1258	0	0	1665	1482	0	3305	0	0	3279	0
Flt Permitted		0.858			0.730			0.913			0.892	
Satd. Flow (perm)	0	1099	0	0	1267	1482	0	3020	0	0	2928	0
Right Turn on Red			Yes			Yes			Yes			Yes

Satd. Flow (RTOR)		18				61		4			3	
Link Speed (mph)		25			25			45			45	
Link Distance (ft)		484			1094			527			557	
Travel Time (s)		13.2			29.8			8.0			8.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	100\%	8\%	0\%	10\%	6\%	9\%	8\%	9\%	2\%	3\%	10\%	11\%
Adj. Flow (vph)	13	4	18	57	9	61	17	1280	16	33	1596	16

Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	35	0	0	66	61	0	1313	0	0	1645	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(t)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1	1	1	0		1	0	
Detector Template	Left			Left		Right	Left			Left		
Leading Detector (ft)	20	15		20	20	20	20	0		20	0	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	15		20	20	20	20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	

Detector 1 Channel

Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	NA
Protected Phases		4		4			2	2	2
Permitted Phases	4		4		4	2			
Detector Phase	4	4	4	4	4				
Switch Phase									15.0
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	15.0	15.0	15.0	
Minimum Split (s)	11.7	11.7	11.7	11.7	11.7	21.8	21.8	21.8	21.8

Lane Group		EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
SBR												
Total Split (s)	16.5	16.5		16.5	16.5	16.5	73.5	73.5	73	73.5	73.5	
Total Split (\%)	18.3%	18.3%		18.3%	18.3%	18.3%	81.7%	81.7%	81.7%	81.7%		
Maximum Green (s)	11.8	11.8		11.8	11.8	11.8	66.7	66.7	6.7	66.7		
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	4.8	4.8	4.8	4.8		
All-Red Time (s)	1.7	1.7		1.7	1.7	1.7	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)		0.0			0.0	0.0		0.0		0.0		
Total Lost Time (s)		4.7		4.7	4.7		6.8		6.8			

Lead/Lag
Lead-Lag Optimize?

Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	C-Max	C-Max	C-Max	C-Max
Act Efftt Green (s)		9.2		9.2	9.2		73.0		73.0
Actuated g/C Ratio		0.10		0.10	0.10		0.81		0.81
v / c Ratio		0.27		0.51	0.30		0.54		0.69
Control Delay		28.2		51.9	13.9		5.6		4.3
Queue Delay		0.0		0.0	0.0		0.0		0.0
Total Delay		28.2		51.9	13.9		5.6		4.3
LOS		C		D	B		A		A
Approach Delay		28.2		33.7			5.6		4.3

Approach LOS		C		C			A		A
90th \%ile Green (s)	11.8	11.8	11.8	11.8	11.8	66.7	66.7	66.7	66.7
90th \%ile Term Code	Max	Max	Max	Max	Max	Coord	Coord	Coord	Coord
70th \%ile Green (s)	10.9	10.9	10.9	10.9	10.9	67.6	67.6	67.6	67.6
70th \%ile Term Code	Gap	Gap	Gap	Gap	Gap	Coord	Coord	Coord	Coord
50th \%ile Green (s)	9.0	9.0	9.0	9.0	9.0	69.5	69.5	69.5	69.5
50th \%ile Term Code	Gap	Gap	Gap	Gap	Gap	Coord	Coord	Coord	Coord
30th \%ile Green (s)	7.2	7.2	7.2	7.2	7.2	71.3	71.3	71.3	71.3
30th \%ile Term Code	Gap	Gap	Gap	Gap	Gap	Coord	Coord	Coord	Coord
10th \%ile Green (s)	0.0	0.0	0.0	0.0	0.0	83.2	83.2	83.2	83.2

Stops (vph)	20	56	15	500	476
Fuel Used(gal)	0	1	1	17	24
CO Emissions (g/hr)	27	100	52	1199	1655
NOx Emissions (g/hr)	5	19	10	233	322
VOC Emissions (ghr)	6	23	12	278	384
Dilemma Vehicles (\#)	0	0	0	46	79
Queue Length 50th (ft)	9	36	0	125	135
Queue Length 95th (ft)	37	76	35	m 243	447
Internal Link Dist (ft)	404			477	
Turn Bay Length ((tt)					
Base Capacity (vph)	159	0	247	2451	2376
Starvation Cap Reductn	0	0	0	0	0
Spilllack Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0.40	0.25	0.54	0
Reduced v/c Ratio					0.69

Intersection Summary

Area Type: Other
Cycle Length: 90

Actuated Cycle Length: 90
Offset: 88 (98\%), Referenced to phase 2:NBSB, Start of Yellow
Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.69
Intersection Signal Delay: 6.3 Intersection LOS: A
Intersection Capacity Utilization 80.6\% ICU Level of Service D
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 222: Southern Auto Auction

	4						4	4				\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		*		${ }^{7}$	$\hat{\square}$			\uparrow	F
Trafic Volume (vph)	102	0	108	10	0	10	24	839	0	20	679	44
Future Volume (vph)	102	0	108	10	0	10	24	839	0	20	679	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	300		0	0		400
Storage Lanes	0		1	0		0	1		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor							1.00					
Frt			0.850		0.932							0.850
Flt Protected		0.950			0.976		0.950				0.999	
Satd. Flow (prot)	0	1399	1615	0	1694	0	1203	1759	0	0	1745	1272
Flt Permitted		0.743			0.866		0.283				0.964	
Satd. Flow (perm)	0	1094	1615	0	1503	0	358	1759	0	0	1683	1272
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			117		85							61
Link Speed (mph)		25			30			45			45	
Link Distance (tt)		532			223			1555			682	
Travel Time (s)		14.5			5.1			23.6			10.3	
Confl. Peds. (\#/hr)							1					
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	29\%	2\%	0\%	2\%	2\%	2\%	50\%	8\%	2\%	2\%	9\%	27\%
Adj. Flow (vph)	111	0	117	11	0	11	26	912	0	22	738	48
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	111	117	0	22	0	26	912	0	0	760	48
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		5			0			12			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2		1	2		1	2	1
Detector Template	Left	Thru	Right	Left	Thru		Left			Left		Right
Leading Detector (ft)	20	100	20	20	100		20	293		20	283	20
Trailing Detector (ft)	0	0	0	0	0		0	200		0	200	0
Detector 1 Position(tt)	0	0	0	0	0		0	200		0	200	0
Detector 1 Size(ft)	20	6	20	20	6		20	6		20	6	20
Detector 1 Type	Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(tt)		94			94			287			277	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA	Prot	Perm	NA	D.P+P	NA	Perm	NA	Perm		
Protected Phases		4	4		4	1	12		2	2	2	
Permitted Phases	4			4		2			2	2	2	

Switch Phase									
Minimum Initial (s)	4.5	4.5	4.5	4.5	4.5	4.5	15.0	15.0	15.0
Minimum Split (s)	9.0	9.0	9.0	9.0	9.0	9.0	21.0	21.0	21.0
Total Split (s)	20.0	20.0	20.0	20.0	20.0	9.0	61.0	61.0	61.0
Total Split (\%)	22.2\%	22.2\%	22.2\%	22.2\%	22.2\%	10.0\%	67.8\%	67.8\%	67.8\%
Maximum Green (s)	16.0	16.0	16.0	16.0	16.0	5.0	55.0	55.0	55.0
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	4.8	4.8	4.8
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.2	1.2	1.2
Lost Time Adjust (s)		0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)		4.0	4.0		4.0	4.0		6.0	6.0
Lead/Lag						Lead	Lag	Lag	Lag
Lead-Lag Optimize?									
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	C-Min	C-Min	C-Min

	None	None	None	None	None	None		C-Min	C-Min
C-Min									
Act Effct Green (s)	13.1	13.1	13.1	67.3	68.9		63.3	63.3	
Actuated g/C Ratio	0.15	0.15	0.15	0.75	0.77	0.70	0.70		
V/c Ratio	0.70	0.35	0.08	0.08	0.68	0.64	0.05		
Control Delay	58.8	9.6	0.5	2.0	5.6	7.9	0.2		
Queue Delay	0.0	0.0	0.0	0.0	0.1	0.0	0.0		
Total Delay	58.8	9.6	0.5	2.0	5.8	7.9	0.2		
LOS	E	A	A	A	A	A	A		

Approach Delay	33.6			0.5			5.7	7.4		
Approach LOS		C			A		A		A	
90th \%ile Green (s)	16.0	16.0	16.0	16.0	16.0	5.0		55.0	55.0	55.0
90th \%ile Term Code	Max	Max	Max	Max	Max	Max		Coord	Coord	Coord
70th \%ile Green (s)	16.0	16.0	16.0	16.0	16.0	5.0		55.0	55.0	55.0
70th \%ile Term Code	Max	Max	Max	Max	Max	Max		Coord	Coord	Coord
50th \%ile Green (s)	14.3	14.3	14.3	14.3	14.3	0.0		65.7	65.7	65.7
50th \%ile Term Code	Gap	Gap	Gap	Gap	Gap	Skip		Coord	Coord	Coord
30th \%ile Green (s)	11.6	11.6	11.6	11.6	11.6	0.0		68.4	68.4	68.4
30th \%ile Term Code	Gap	Gap	Gap	Gap	Gap	Skip		Coord	Coord	Coord
10th \%ile Green (s)	7.6	7.6	7.6	7.6	7.6	0.0		72.4	72.4	72.4
10th \%ile Term Code	Gap	Gap	Gap	Gap	Gap	Skip		Coord	Coord	Coord
Stops (vph)		96	19		0	4	282		345	0
Fuel Used(gal)		2	1		0	0	13		9	0
CO Emissions (g/hr)		143	54		3	21	905		595	14
NOX Emissions (g/hr)		28	11		1	4	176		116	3
VOC Emissions (g/hr)		33	13		1	5	210		138	3
Dilemma Vehicles (\#)		0	0		0	0	34		33	0
Queue Length 50th (ft)		60	0		0	1	32		114	1
Queue Length 95th (t)		\#118	45		0	m3	388		75	m0
Internal Link Dist (ft)		452			143		1475		602	
Turn Bay Length (ft)						300				400
Base Capacity (vph)		194	383		337	318	1346		1183	913
Starvation Cap Reductn		0	0		0	0	0		0	0

Splits and Phases: 225: MMCT Casino

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	7		\uparrow	F	\%	F			\uparrow	F
Traffic Volume (vph)	59	0	74	30	1	8	110	816	12	1	753	44
Future Volume (vph)	59	0	74	30	1	8	110	816	12	1	753	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	12	12	12	12	12	12	12	12	12	12	12
Storage Length (ft)	0		0	0		50	360		0	0		370
Storage Lanes	0		1	0		1	1		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor			0.98									
Frt			0.850			0.850		0.998				0.850
Flt Protected		0.950			0.954		0.950					
Satd. Flow (prot)	0	1543	1615	0	1596	1615	1583	1757	0	0	1793	1482
Flt Permitted		0.735			0.686		0.265				0.999	
Satd. Flow (perm)	0	1194	1579	0	1147	1615	442	1757	0	0	1791	1482
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			80			112		3				61
Link Speed (mph)		25			25			45			45	
Link Distance (ft)		626			337			828			1555	
Travel Time (s)		17.1			9.2			12.5			23.6	

Confl. Bikes (\#/hr)	1											
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	17%	0%	0%	14%	0%	0%	14%	8%	3%	0%	6%	9%
Adj. Flow (vph)	64	0	80	33	1	9	120	887	13	1	818	48

Shared Lane Traffic (\%)											
Lane Group Flow (vph)	0	64	80	0	34	9	120	900	0	0	819
Enter Blocked Intersection	No										
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left
Median Width(ft)		5			0			12			0
Link Offset(f)		0			0			0		0	
Crosswalk Width(ft)		16			16			16			16

Two way Left Turn Lane												
Headway Factor	1.04	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1	1	1	2		1	2	2
Detector Template	Left			Left						Left		
Leading Detector (tt)	20	29	29	20	14	14	24	366		20	366	366
Trailing Detector (ft)	0	-5	-5	0	-10	-10	-10	180		0	180	180
Detector 1 Position(ft)	0	-5	-5	0	-10	-10	-10	180		0	180	180
Detector 1 Size(ft)	20	34	34	20	24	24	34	6		20	6	6
Detector 1 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$						
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 2 Position(ft)								360			360	360
Detector 2 Size(ft)								6			6	6
Detector 2 Type								$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$

Detector 2 Channel

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Extend (s)								0.0		0.0	0.0	
Turn Type	Perm	NA	pm+ov	Perm	NA	Perm	D.P+P	NA	Perm	NA	Perm	
Protected Phases		4	1		4		1	12		2	2	2
Permitted Phases	4		4	4		4	2			2		2
Detector Phase	4	4	4	4	4	4	1	2		2	2	2

Switch Phase

Minimum Initial (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5		15.0	15.0	15.0
Minimum Split (s)	9.0	9.0	9.0	9.0	9.0	9.0	9.0		23.4	23.4	23.4
Total Split (s)	15.0	15.0	9.0	15.0	15.0	15.0	9.0		66.0	66.0	66.0
Total Split (\%)	16.7\%	16.7\%	10.0\%	16.7\%	16.7\%	16.7\%	10.0\%		73.3\%	73.3\%	73.3\%
Maximum Green (s)	11.0	11.0	5.0	11.0	11.0	11.0	5.0		57.8	57.8	57.8
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0		4.8	4.8	4.8
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0		3.4	3.4	3.4
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0			0.0	0.0
Total Lost Time (s)		4.0	4.0		4.0	4.0	4.0			8.2	8.2
Lead/Lag			Lead				Lead		Lag	Lag	Lag
Lead-Lag Optimize?											
Vehicle Extension (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5		2.5	2.5	2.5
Recall Mode	None		C-Min	C-Min	C-Min						
Act Effct Green (s)		8.4	12.5		8.4	8.4	71.3	76.1		62.1	62.1
Actuated g/C Ratio		0.09	0.14		0.09	0.09	0.79	0.85		0.69	0.69
v/c Ratio		0.58	0.28		0.32	0.04	0.29	0.61		0.66	0.05
Control Delay		58.8	9.7		45.0	0.2	4.8	8.5		5.0	0.2
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0
Total Delay		58.8	9.7		45.0	0.2	4.8	8.5		5.0	0.2
LOS		E	A		D	A	A	A		A	A
Approach Delay		31.5			35.7			8.1		4.7	
Approach LOS		C			D			A		A	

90th \%ile Green (s)	11.0	11.0	5.0	11.0	11.0	11.0	5.0		57.8	57.8	57.8
90th \%ile Term Code	Max		Coord	Coord	Coord						
70th \%ile Green (s)	10.8	10.8	5.2	10.8	10.8	10.8	5.2		57.8	57.8	57.8
70th \%ile Term Code	Gap	Gap	Max	Gap	Gap	Gap	Max		Coord	Coord	Coord
50th \%ile Green (s)	8.8	8.8	5.4	8.8	8.8	8.8	5.4		59.6	59.6	59.6
50th \%ile Term Code	Gap		Coord	Coord	Coord						
30th \%ile Green (s)	6.8	6.8	4.9	6.8	6.8	6.8	4.9		62.1	62.1	62.1
30th \%ile Term Code	Gap		Coord	Coord	Coord						
10th \%ile Green (s)	0.0	0.0	4.5	0.0	0.0	0.0	4.5		73.3	73.3	73.3
10th \%ile Term Code	Skip	Skip	Min	Skip	Skip	Skip	Min		Coord	Coord	Coord
Stops (vph)		56	16		30	0	31	497		152	1
Fuel Used(gal)		1	1		0	0	1	12		10	0
CO Emissions (g/hr)		86	42		34	2	76	843		717	32
NOX Emissions (g/hr)		17	8		7	0	15	164		140	6
VOC Emissions (g/hr)		20	10		8	0	18	195		166	7
Dilemma Vehicles (\#)		0	0		0	0	0	49		25	0
Queue Length 50th (ft)		35	0		18	0	8	229		147	1
Queue Length 95th (ft)		75	35		47	0	43	292		65	m1
Internal Link Dist (ft)		546			257			748		1475	
Turn Bay Length (ft)						50	360				370
Base Capacity (vph)		145	332		140	295	415	1486		1236	1041

	4	\rightarrow	\geqslant	\checkmark	4	4	4	\uparrow	p		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Starvation Cap Reductn		0	0		0	0	0	0			0	0
Spillback Cap Reductn		0	0		0	0	0	0			0	0
Storage Cap Reductn		0	0		0	0	0	0			0	0
Reduced v/c Ratio		0.44	0.24		0.24	0.03	0.29	0.61			0.66	0.05
Intersection Summary												
Area Type:												

Cycle Length: 90
Actuated Cycle Length: 90
Offset: 48 (53\%), Referenced to phase 2:NBSB, Start of Yellow
Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.66

Intersection Signal Delay: 8.9	Intersection LOS: A
Intersection Capacity Utilization 106.8\%	ICU Level of Service G

Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 226: Big Y/Ethos

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow		\%	\uparrow		\%	¢4	F	\%	个	
Trafic Volume (vph)	47	11	77	224	31	124	123	796	338	108	704	54
Future Volume (vph)	47	11	77	224	31	124	123	796	338	108	704	54
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	12	12	12	12	12	12	12	12	12	12	12
Storage Length (ft)	0		0	0		0	110		140	250		0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (tt)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	1.00	1.00
Ped Bike Factor		0.98										
Frt		0.869			0.880				0.850		0.989	
FIt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1745	1613	0	1736	1633	0	1805	3312	1524	1770	1764	0
Flt Permitted	0.889			0.526			0.160			0.281		
Satd. Flow (perm)	1633	1613	0	961	1633	0	304	3312	1524	523	1764	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		84			135				367		7	
Link Speed (mph)		25			25			45			45	
Link Distance (ft)		349			546			571			400	
Travel Time (s)		9.5			14.9			8.7			6.1	
Confl. Bikes (\#/hr)			1									
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	0\%	0\%	4\%	0\%	3\%	0\%	9\%	6\%	2\%	7\%	0\%
Adj. Flow (vph)	51	12	84	243	34	135	134	865	367	117	765	59
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	51	96	0	243	169	0	134	865	367	117	824	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	2	1	1	2	
Detector Template									Right		Thru	
Leading Detector (ft)	30	30		33	46		48	356	20	38	100	
Trailing Detector (ft)	-5	-5		-5	0		0	165	0	0	0	
Detector 1 Position(ft)	-5	-5		-5	0		0	165	0	0	0	
Detector 1 Size(ft)	35	35		38	46		48	6	20	38	6	
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(ft)								350			94	
Detector 2 Size(ft)								6			6	
Detector 2 Type								Cl+Ex			Cl+Ex	
Detector 2 Channel												

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Extend (s)								0.0			0.0	
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8			2		2	6		
Detector Phase	7	4		3	8		5	2	2	1	6	
Switch Phase												
Minimum Initial (s)	3.6	5.0		3.6	5.0		3.6	13.1	13.1	4.1	13.1	
Minimum Split (s)	8.1	9.7		8.1	9.7		8.1	24.3	24.3	8.1	21.3	
Total Split (s)	8.2	10.2		15.6	17.6		9.4	54.8	54.8	9.4	54.8	
Total Split (\%)	9.1\%	11.3\%		17.3\%	19.6\%		10.4\%	60.9\%	60.9\%	10.4\%	60.9\%	
Maximum Green (s)	5.1	5.5		12.5	12.9		6.3	48.5	48.5	6.3	48.5	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	4.5	4.5	3.0	4.5	
All-Red Time (s)	0.1	1.7		0.1	1.7		0.1	1.8	1.8	0.1	1.8	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.1	4.7		3.1	4.7		3.1	6.3	6.3	3.1	6.3	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.5	2.5	2.0	2.5	
Recall Mode	None	None		None	None		None	C-Min	C-Min	None	C-Min	
Act Effct Green (s)	10.7	5.3		20.3	13.7		60.5	51.3	51.3	60.3	51.2	
Actuated g/C Ratio	0.12	0.06		0.23	0.15		0.67	0.57	0.57	0.67	0.57	
v / c Ratio	0.25	0.55		0.75	0.47		0.44	0.46	0.36	0.27	0.82	
Control Delay	30.0	25.1		46.5	14.8		6.7	6.1	0.5	6.8	20.3	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	30.0	25.1		46.5	14.8		6.7	6.1	0.5	6.8	20.3	
LOS	C	C		D	B		A	A	A	A	C	
Approach Delay		26.8			33.5			4.7			18.6	
Approach LOS		C			C			A			B	
90th \%ile Green (s)	5.1	5.5		12.5	12.9		6.3	48.5	48.5	6.3	48.5	
90th \%ile Term Code	Max	Max		Max	Hold		Max	Coord	Coord	Max	Coord	
70th \%ile Green (s)	5.1	5.5		12.5	12.9		6.3	48.5	48.5	6.3	48.5	
70th \%ile Term Code	Max	Max		Max	Hold		Max	Coord	Coord	Max	Coord	
50th \%ile Green (s)	5.4	5.3		12.8	12.7		6.5	48.2	48.2	6.5	48.2	
50th \%ile Term Code	Max	Gap		Max	Hold		Max	Coord	Coord	Max	Coord	
30th \%ile Green (s)	0.0	5.0		13.3	21.4		6.1	48.6	48.6	5.9	48.4	
30th \%ile Term Code	Skip	Min		Gap	Hold		Gap	Coord	Coord	Gap	Coord	
10th \%ile Green (s)	0.0	0.0		10.3	8.7		4.8	62.5	62.5	4.7	62.4	
10th \%ile Term Code	Skip	Skip		Gap	Hold		Gap	Coord	Coord	Gap	Coord	
Stops (vph)	41	27		192	43		39	241	15	32	420	
Fuel Used(gal)	1	1		4	1		1	7	1	1	12	
CO Emissions (g/hr)	41	57		273	94		78	485	103	77	856	
NOx Emissions (g/hr)	8	11		53	18		15	94	20	15	167	
VOC Emissions (g/hr)	9	13		63	22		18	112	24	18	198	
Dilemma Vehicles (\#)	0	0		0	0		0	46	0	0	49	
Queue Length 50th (ft)	22	7		120	17		7	32	0	15	154	
Queue Length 95th (ft)	51	\#55		\#208	76		m8	m25	m0	m40	\#628	
Internal Link Dist (ft)		269			466			491			320	
Turn Bay Length (ft)							110		140	250		
Base Capacity (vph)	202	177		331	377		310	1888	1026	440	1007	

	4	\rightarrow	7	7	\checkmark	4	4	\dagger	p	\%	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	
Reduced v/c Ratio	0.25	0.54		0.73	0.45		0.43	0.46	0.36	0.27	0.82	
Intersection Summary												
Area Type:												

Cycle Length: 90
Actuated Cycle Length: 90
Offset: 45 (50%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow
Natural Cycle: 80
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.82

Intersection Signal Delay: 14.5	Intersection LOS: B
Intersection Capacity Utilization 80.7\%	ICU Level of Service D

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.

Appendix 4 - Future Transit Demand Calculations

In order to estimate demand for program and non-program demand response services, a modified version of the methodology presented in the Transit Cooperative Research Program (TCRP) Report 3 was used. The first methodology shown below uses the following inputs and formulas to calculate demand reported on a community-wide basis for program (or limited) demand response services and the second computes the demand for non-program demand on a community-wide basis for those services open to the general public. The output of this demand methodology results in an annual ridership demand estimate.

Program and Non-Program Demand Methodologies

Program Demand Inputs6:

- Age 15 and above $\left(a_{1}\right)$
- Total Mobility Limited ${ }^{7}\left(b_{t}\right)$
- Mobility Limited I8 to $64\left(b_{1}\right)$
- Age 15 to $64\left(a_{2}\right)$

Age 65 and above (a_{3}) Program Participation Formulas ${ }^{8}$:

- from Developmental Services: Adult: $P_{1}=2.15 \times\left(a_{1} \div 1000\right)$
- from Developmental Services: Case Management: $P_{2}=29.8 \times\left(b_{1} \div 1000\right)$
- from Group Home (below 2,000 mobility limited in town): $P_{3}=10.96 \times\left(b_{t} \div 1000\right)$
- from Mental Health Services (below 2,000 mobility limited in town): $P_{4}=27.6 \times\left(b_{t} \div 1000\right)$
- from Mental Health Services: Case Management: $P_{5}=8.4 \times\left(a_{2} \div 1000\right)$
- from Senior Nutrition: $P_{6}=30.1 \times\left(a_{3} \div 1000\right)$

Program Annual Trip Rates (using Low Observed Rate) ${ }^{9}$:

- Developmental Services: Adult: I38.6
- Developmental Services: Case Management: 20
- Group Home (above 2,000 mobility limited in county): $\mathbf{1 9 6 . 2}$
- Mental Health Services (above 2,000 mobility limited in county): $\mathbf{3 0}$
- Mental Health Services: Case Management: $\mathbf{2 . 4}$

[^9]- from Senior Nutrition: II7.6

Program Demand Equation:

$$
D=\left(P_{1} \times 138.6\right)+\left(P_{2} \times 20\right)+\left(P_{3} \times 196.2\right)+\left(P_{4} \times 30\right)+\left(P_{5} \times 2.4\right)+\left(P_{6} \times 117.6\right)
$$

Program Annual Trip Rates (using Low Observed Rate) ${ }^{10}$:

- Developmental Services: Adult: I38.6
- Developmental Services: Case Management: $\mathbf{2 0}$
- Group Home (above 2,000 mobility limited in county): 196.2
- Mental Health Services (above 2,000 mobility limited in county): $\mathbf{3 0}$
- Mental Health Services: Case Management: 2.4
- from Senior Nutrition: II7.6

Program Demand Equation:

$$
D=\left(P_{1} \times 138.6\right)+\left(P_{2} \times 20\right)+\left(P_{3} \times 196.2\right)+\left(P_{4} \times 30\right)+\left(P_{5} \times 2.4\right)+\left(P_{6} \times 117.6\right)
$$

For demand response services open to the general public, two methods "l can be applied to determine non-program demand in either a rural or small urban setting. One method is to compare the system analyzed to peer systems within the state. In using this method, the parameters/ground rules for each comparison would need to be determined in advance, and this method could only be used to project demand in counties where some level of service already exists. Another method, which can be applied to all areas of the state regardless of current levels of service, uses an equation based on an analysis of the 2009 Rural National Transit Database and workshops conducted by that organization ${ }^{12}$. This equation weights three demographic groups who are most likely to use public transit. The second (demographic based) method will be used to compute non-program demand response estimated ridership because of its universal applicability.

Non-Program Demand Inputs ${ }^{13}$:

- Persons Age 60+ (a)
- Mobility Limited I8 to 64 (b)
- Persons Residing in Households With No Vehicle Available (c)

Formulas:

- Population Age 60+: $2.20 \times a$

[^10]- Mobility Limited Population 18-6414: $5.21 \times b$
- Persons Residing in Households With No Vehicle Available: $1.52 \times c$ Non-Program Demand Equation:

$$
D=(2.20 \times a)+(5.21 \times b)+(1.52 \times c)
$$

The result is a future program demand of 13,317 rides and an annual non-program (general public) demand of $9,95 \mathrm{I}$ rides for a total of $\mathbf{2 2 , 9 0 8}$.

Commuter Demand Methodologies

In order to calculate the need for commuter routes, the "On the Map" function on the US Census Website ${ }^{15}$ was used to calculate demand for commuter trips. Once this number was determined, it was plugged into the equation below. ${ }^{16} \mathrm{~A}$ metric of estimated commuters riding public transit could then be established, and a flex commuter route was conceptualized, if necessary. Because East Windsor is both an employment center and residential community, both inflow and outflow commuting was used. In order to determine the threshold for establishing a new commuter route, the current demand for trips to and from Hartford is used as a threshold. This would indicate the threshold needed to establish a commuter route at 208 daily estimated trips.

Commuter Route Inputs:

- Workers Commuting to/from East Windsor to Urban Place (a)
- Distance in Miles to/from East Windsor to Urban Place (b) ${ }^{17}$
- Number of Commuters (c)

Equation to Estimate Commuter Transit Trips Per Day:

$$
D=[0.024+(0.0000056 \times a)-(0.00029 \times b)] \times c \times 2
$$

The above will multiplied by the projected increase in employment by 2025 (percentage), to get an idea of future demand ${ }^{18}$.

[^11]
Appendix 5 - Conceptual Plans of Alternatives

5' Concrete Sidewalk for Pedestrian
Connection to Warehouse Point
(Match Existing Sidewalk at I-9I SB Off-Ramp)

 7 New Calamar Housing

Legend:
\quad Widened Pavement
Existing Pavement / Bituminous Sidewalk
Concrete Sidewalk
Landscaping

1-91. NB:OFF-RAMP
Connection to Warehouse Point
(Match Existing Sidewalk at I-9I SB Off-Ramp)

2. FORMER SHOWCASE CINEMA

[^0]: Roadway Functional Classification : The Federal Highway Administration (FHWA) classifies roadways by their functionality. Roadways serve two primary travel needs, local site access and long-range travel.
 There are four major roadway functional classifications:

 - Interstates
 - Arterials
 - Collectors
 - Local roads

 In both rural and urban areas, principal arterials carry the highest traffic volumes and support longer distance travel. Routes on the principal arterial system are divided into Interstates and other principal arterials; these include freeways, multilane highways, and other important roadways that supplement the Interstate System. They connect urbanized areas, cities, and industrial centers. Land access is limited. Posted speed limits on arterials usually range between 45 and 70 mph . (FHWA)

[^1]: ' There was a potential demand of 191,696 for transit rides in the Northeastern Connecticut Transit District (NECTD), but only 43,414 rides were taken last year.
 ${ }^{2}$ Formula to determine the number of vehicles needed: number of service hours divided by 255 days (annual weekdays), and then divided again by the proposed 12 hour service span to get the number of vehicles needed.
 ${ }^{3}$ http://onthemap.ces.census.gov/

[^2]: ${ }^{5}$ The following definition of ADA eligible comes from the FTA "Transportation Services for Individuals with Disabilities", (49CFR37§3)

[^3]: ${ }^{4}$ This means only program ridership demand would be served

[^4]: Route 5 Study 04/17/2018 2040 AM Base Condition
 SFM

[^5]: Route 5 Study 04/17/2018 2040 AM Base Condition
 SFM

[^6]: Route 5 Study 04/17/2018 2040 PM Base Condition
 SFM

[^7]: Route 5 Study 04/17/2018 2040 AM Build Condition
 SFM

[^8]: Route 5 Study 04/17/2018 2040 AM Build Condition
 SFM

[^9]: ${ }^{6}$ All numbers from American Community Survey 2015-2018 5 Year Estimates
 ${ }^{7}$ Mobility limited considered having an independent living difficulty
 ${ }^{8}$ Formulas are from TCRP 3
 ${ }^{9}$ Trip rates are from TCRP 3 p 85

[^10]: ${ }^{10}$ Trip rates are from TCRP 3 p 85
 ${ }^{11}$ TCRP Report I6I: Workbook for Estimating Demand for Rural Passenger Transportation(Non-Program Demand Formula)
 ${ }^{12}$ http://www.ntdprogram.gov/ntdprogram/data.htm (RY2009 Database)
 ${ }^{13}$ All numbers from American Community Survey 2015-2019 5 Year Estimates

[^11]: ${ }^{4}$ Mobility limited considered having an independent living difficulty
 ${ }^{15} \mathrm{http}: / /$ onthemap.ces.census.gov/
 ${ }^{16}$ TCRP Report 161: Workbook for Estimating Demand for Rural Passenger Transportation (Commuters to Urban Centers), p 28.
 ${ }^{17}$ Distance used is from the geographic center of East Windsor to a town or city center
 ${ }^{18}$ Hartford and Windsor Locks employment gains can be found here at the State of Connecticut's Labor Market Information Website https://wwwl.ctdol.state.ct.us/lmi/projections.asp (7\% in the North Central WDA); Springfield can be found at the State of Massachusetts Labor Market Information Website (3.38% in the Central MA WDA). Both estimates project out IO years in the future, but have different baseline years for the beginning of their projections.

